• Title/Summary/Keyword: Path-based Computation

Search Result 138, Processing Time 0.037 seconds

Real-time Intelligent Exit Path Indicator Using BLE Beacon Enabled Emergency Exit Sign Controller

  • Jung, Joonseok;Kwon, Jongman;Jung, Soonho;Lee, Minwoo;Mariappan, Vinayagam;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • Emergency lights and exit signs are an indispensable part of safety precautions for effective evacuation in case of emergency in public buildings. These emergency sign indicates safe escape routes and emergency doors, using an internationally recognizable sign. However visibility of those signs drops drastically in case of emergency situations like fire smoke, etc. and loss of visibility causes serious problems for safety evacuation. This paper propose a novel emergency light and exit sign built-in with Bluetooth Low Energy (BLE) Beacon to assist the emergency self-guiding evacuation using devices for crisis and emergency management to avoid panic condition inside the buildings. In this approach, the emergency light and exit sign with the BLE beacons deployed in the indoor environments and the smart devices detect their indoor positions, direction to move, and next exit sign position from beacon messages and interact with map server in the Internet / Intranet over the available LTE and/or Wi-Fi network connectivity. The map server generate an optimal emergency exit path according to the nearest emergency exit based on a novel graph generation method for less route computation for each smart device. All emergency exit path data interfaces among three system components, the emergency exit signs, map server, and smart devices, have been defined for modular implementation of our emergency evacuation system. The proposed exit sign experimental system has been deployed and evaluated in real-time building environment thoroughly and gives a good evidence that the modular design of the proposed exit sign system and a novel approach to compute emergency exit path route based on the BLE beacon message, map server, and smart devices is competitive and viable.

SOC Verification Based on WGL

  • Du, Zhen-Jun;Li, Min
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1607-1616
    • /
    • 2006
  • The growing market of multimedia and digital signal processing requires significant data-path portions of SoCs. However, the common models for verification are not suitable for SoCs. A novel model--WGL (Weighted Generalized List) is proposed, which is based on the general-list decomposition of polynomials, with three different weights and manipulation rules introduced to effect node sharing and the canonicity. Timing parameters and operations on them are also considered. Examples show the word-level WGL is the only model to linearly represent the common word-level functions and the bit-level WGL is especially suitable for arithmetic intensive circuits. The model is proved to be a uniform and efficient model for both bit-level and word-level functions. Then Based on the WGL model, a backward-construction logic-verification approach is presented, which reduces time and space complexity for multipliers to polynomial complexity(time complexity is less than $O(n^{3.6})$ and space complexity is less than $O(n^{1.5})$) without hierarchical partitioning. Finally, a construction methodology of word-level polynomials is also presented in order to implement complex high-level verification, which combines order computation and coefficient solving, and adopts an efficient backward approach. The construction complexity is much less than the existing ones, e.g. the construction time for multipliers grows at the power of less than 1.6 in the size of the input word without increasing the maximal space required. The WGL model and the verification methods based on WGL show their theoretical and applicable significance in SoC design.

  • PDF

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

Effective Robot Path Planning Method based on Fast Convergence Genetic Algorithm (유전자 알고리즘의 수렴 속도 향상을 통한 효과적인 로봇 길 찾기 알고리즘)

  • Seo, Min-Gwan;Lee, Jae-Sung;Kim, Dae-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2015
  • The Genetic algorithm is a search algorithm using evaluation, genetic operator, natural selection to populational solution iteratively. The convergence and divergence characteristic of genetic algorithm are affected by selection strategy, generation replacement method, genetic operator when genetic algorithm is designed. This paper proposes fast convergence genetic algorithm for time-limited robot path planning. In urgent situation, genetic algorithm for robot path planning does not have enough time for computation, resulting in quality degradation of found path. Proposed genetic algorithm uses fast converging selection strategy and generation replacement method. Proposed genetic algorithm also uses not only traditional crossover and mutation operator but additional genetic operator for shortening the distance of found path. In this way, proposed genetic algorithm find reasonable path in time-limited situation.

Efficient Route Determination Technique in LBS System

  • Kim, Sung-Soo;Kim, Kwang-Soo;Kim, Jae-Chul;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.843-845
    • /
    • 2003
  • Shortest Path Problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is the route determination service, where various kinds of shortest path problems need to be solved in location-based service. Our research aim is to propose a route technique in real-time locationbased service (LBS) environments according to user’s route preferences such as shortest, fastest, easiest and so on. Turn costs modeling and computation are important procedures in route planning. There are major two kinds of cost parameters in route planning. One is static cost parameter which can be pre-computed such as distance and number of traffic-lane. The other is dynamic cost parameter which can be computed in run-time such as number of turns and risk of congestion. In this paper, we propose a new cost modeling method for turn costs which are traditionally attached to edges in a graph. Our proposed route determination technique also has an advantage that can provide service interoperability by implementing XML web service for the OpenLS route determination service specification. In addition to, describing the details of our shortest path algorithms, we present a location-based service system by using proposed routing algorithms.

  • PDF

QoS-based RWA Algorithm for providing QoS Services in the Next Generation Internet based on DWDM (DWDM 기반의 차세대 인터넷에서 QoS서비스 제공을 위한 QoS-based RWA 알고리즘)

  • 배정현;송현수;김성운;김영부;조기성;이현진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.27-37
    • /
    • 2003
  • In the next generation Internet(NGI) based on dense wavelength division multiplexing(DWDM) technology, QoS RWA considering various QoS parameters of DWDM networks is regard as one of the key issues in providing real-time multimedia services. However, finding a qualified path meeting multi-constraints is generally NP-complete problem. It is insufficient for QoS RWA researches in DWDM networks that must consider QoS parameter as well as wavelength-continuity constraint. This paper proposes qualified path routing (QPR) algorithm with minimum computation and implementation complexity based on flooding method to accomplish QoS routing and wavelength assignment (RWA). We also introduce a QoS-based RWA mechanism considering multi-constraint such as optical signal quality attributes, survivability and wavelength-continuity constraint combined with proposed routing algorithm. Simulation results show superior efficiency of the proposed algorithms in terms of blocking probability, routing overhead and survivability ratio.

Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes (외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

Applying Meta-Heuristic Algorithm based on Slicing Input Variables to Support Automated Test Data Generation (테스트 데이터 자동 생성을 위한 입력 변수 슬라이싱 기반 메타-휴리스틱 알고리즘 적용 방법)

  • Choi, Hyorin;Lee, Byungjeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Software testing is important to determine the reliability of the system, a task that requires a lot of effort and cost. Model-based testing has been proposed as a way to reduce these costs by automating test designs from models that regularly represent system requirements. For each path of model to generate an input value to perform a test, meta-heuristic technique is used to find the test data. In this paper, we propose an automatic test data generation method using a slicing method and a priority policy, and suppress unnecessary computation by excluding variables not related to target path. And then, experimental results show that the proposed method generates test data more effectively than conventional method.

A Study on Path Selection Scheme for Fast Restoration in Multilayer Networks (신속한 다계층 보호 복구를 위한 경로선택 방식 연구)

  • Cho, Yang-Hyun;Kim, Hyun-Cheol
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.35-43
    • /
    • 2012
  • The explosive growth of Internet traffic cause by smart equipment such as smart phone has led to a dramatic increase in demand for data transmission capacity and network control architecture, which requires high transmission rates beyond the conventional transmission capability. Next generation networks are expected to be controlled by Generalized Multi-Protocol Label Switching(GMPLS) protocol suite and operating at multiple switching layers. In order to ensure the most efficient utilization of multilayer network resources, effective global provisioning that providing the network with the possibility of reacting in advance to traffic changes should be provided. In this paper, we proposes a new path selection scheme in multilayer optical networks based on the vertical PCE architecture and a different approach to efficiently exploit multiple PCE cooperation.

Priority Rule Based Heuristics for the Team Orienteering Problem

  • Ha, Kyoung-Woon;Yu, Jae-Min;Park, Jong-In;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.17 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • Team orienteering, an extension of single-competitor orienteering, is the problem of determining multiple paths from a starting node to a finishing node for a given allowed time or distance limit fixed for each of the paths with the objective of maximizing the total collected score. Each path is through a subset of nodes, each of which has an associated score. The team orienteering problem has many applications such as home fuel delivery, college football players recruiting, service technicians scheduling, military operations, etc. Unlike existing optimal and heuristic algorithms often leading to heavy computation, this paper suggests two types of priority rule based heuristics-serial and parallel ones-that are especially suitable for practically large-sized problems. In the proposed heuristics, all nodes are listed in an order using a priority rule and then the paths are constructed according to this order. To show the performances of the heuristics, computational experiments were done on the small-to-medium sized benchmark instances and randomly generated large sized test instances, and the results show that some of the heuristics give reasonable quality solutions within very short computation time.