• Title/Summary/Keyword: Path-Based Algorithm

Search Result 1,377, Processing Time 0.022 seconds

Path Planning Algorithm for UGVs Based on the Edge Detecting and Limit-cycle Navigation Method (Limit-cycle 항법과 모서리 검출을 기반으로 하는 UGV를 위한 계획 경로 알고리즘)

  • Lim, Yun-Won;Jeong, Jin-Su;An, Jin-Ung;Kim, Dong-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • This UGV (Unmanned Ground Vehicle) is not only widely used in various practical applications but is also currently being researched in many disciplines. In particular, obstacle avoidance is considered one of the most important technologies in the navigation of an unmanned vehicle. In this paper, we introduce a simple algorithm for path planning in order to reach a destination while avoiding a polygonal-shaped static obstacle. To effectively avoid such an obstacle, a path planned near the obstacle is much shorter than a path planned far from the obstacle, on the condition that both paths guarantee that the robot will not collide with the obstacle. So, to generate a path near the obstacle, we have developed an algorithm that combines an edge detection method and a limit-cycle navigation method. The edge detection method, based on Hough Transform and IR sensors, finds an obstacle's edge, and the limit-cycle navigation method generates a path that is smooth enough to reach a detected obstacle's edge. And we proposed novel algorithm to solve local minima using the virtual wall in the local vision. Finally, we verify performances of the proposed algorithm through simulations and experiments.

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

Curvature-based 3D Path Planning Algorithm for Quadcopter (쿼드콥터의 곡률 기반 3차원 경로 계획 알고리즘)

  • Jaeyong Park;Boseong Kim;Seungwook Lee;Maulana Bisyir Azhari;Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.316-322
    • /
    • 2023
  • The increasing popularity of autonomous unmanned aerial vehicles (UAVs) can be attributed to their wide range of applications. 3D path planning is one of the crucial components enabling autonomous flight. In this paper, we present a novel 3D path planning algorithm that generates and utilizes curvature-based trajectories. Our approach leverages circular properties, offering notable advantages. First, circular trajectories make collision detection easier. Second, the planning procedure is streamlined by eliminating the need for the spline process to generate dynamically feasible trajectories. To validate our proposed algorithm, we conducted simulations in Gazebo Simulator. Within the simulation, we placed various obstacles such as pillars, nets, trees, and walls. The results demonstrate the efficacy and potential of our proposed algorithm in facilitating efficient and reliable 3D path planning for UAVs.

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.

A Kth Shortest Path Algorithm with the Link-Based Label Setting Approach and Its Application for An Alternative Routes Selection (링크표지확정 다수경로탐색 알고리즘과 대안경로선정을 위한 활용)

  • Lee, Mee-Young;Baik, Nam-Cheol;Kang, Weon-Eui;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.85-96
    • /
    • 2004
  • Given a Path represented by a sequence of link numbers in a transportation network, the reasonable path is defined as a path that any link is appeared multiple times in it. Application of the link labelmethod(LLM) to the shortest path algorithms(SPA) enables to model the reasonable path choice behavior in urban networks. This study aims at expanding the LLM to a Kth shortest path algorithms(KPSA), which adopts the node label setting method. The small-scaled network test demonstrated that the proposed algorithm works correctly and the revised Sioux fall network test showed that the path choice behaviors are reasonably reflected. In the large-scaled network based on the South Korea peninsula, drivers' route diversion perceptions are included as cost terms in total cost. The algorithm may be applied as an alternative route information tools for the deployment of ATIS.

A Pathfinding Algorithm Using Path Information (경로 정보를 이용한 길찾기 알고리즘)

  • Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • A* algorithm is a well known pathfinding algorithm. However, there may be a limit to use A* algorithm in real-time in a map where many interactions occur between objects or many obstacles exist. Therefore, it may be necessary to find a naturally looking path quickly instead of finding a shortest path in games. In this paper, we propose a new heuristic function to exploit path information in a map. We also show that the pathfinding algorithm based on the proposed heuristic function can find a good path much faster than A* algorithm on several grid maps.

Optimal Design of Filament Wound Structures under Internal Pressure based on the Semi-geodesic Path Algorithm (준측지궤적 알고리즘을 적용한 내압을 받는 필라멘트 와인딩 된 복합재 축대칭 구조물의 최적설계)

  • 김철웅;강지호;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.179-182
    • /
    • 2003
  • This research aims to establish an optimal design method of filament wound structures. So far, most design and manufacturing of filament wound structures have been based on manufacturing experiences, and there is no established design rule. In this research, possible winding patterns considering the windability and the slippage between fiber and mandrel surface were calculated using the semi-geodesic path algorithm. In addition, finite element analyses using a commercial code, ABAQUS, were performed to predict the behavior of filament wound structures. On the basis of the semi-geodesic path algorithm and the finite element analysis method, filament wound structures were designed using the genetic algorithm.

  • PDF

Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping

  • Namgung, Ihn
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.92-105
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on algebraic curve is developed and the concept of collision-free Path Space (PS) is introduced. This paper presents a Geometry Mapping (GM) based on two straight curves in which the intermediate connection point is organized in elliptic locus ($\delta$, $\theta$). The GM produces two-dimensional PS that is used to create the shortest collision-free path. The elliptic locus of intermediate connection point has a special property in that the total distance between the focus points through a point on ellipse is the same regardless of the location of the intermediate connection point on the ellipse. Since the radial distance, a, represents the total length of the path, the collision-free path can be found as the GM proceeds from $\delta$=0 (the direct path) to $\delta$=$\delta$$\_$max/(the longest path) resulting in the minimum time search. The GM of elliptic workspace (EWS) requires calculation of interference in circumferential direction only. The procedure for GM includes categorization of obstacles to .educe necessary calculation. A GM based on rectangular workspace (RWS) using Cartesian coordinate is also considered to show yet another possible GM. The transformations of PS among Circular Workspace Geometry Mapping (CWS GM) , Elliptic Workspace Geometry Mapping (EWS GM) , and Rectangular Workspace Geometry Mapping (RWS GM), are also considered. The simulations for the EWS GM on various computer systems are carried out to measure performance of algorithm and the results are presented.

Male-Silkmoth-Inspired Routing Algorithm for Large-Scale Wireless Mesh Networks

  • Nugroho, Dwi Agung;Prasetiadi, Agi;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.384-393
    • /
    • 2015
  • This paper proposes an insect behavior-inspired routing algorithm for large-scale wireless mesh networks. The proposed algorithm is adapted from the behavior of an insect called Bombyx mori, a male silkmoth. Its unique behavior is its flying technique to find the source of pheromones. The algorithm consists of two steps: the shortest-path algorithm and the zigzag-path algorithm. First, the shortest-path algorithm is employed to transmit data. After half of the total hops, the zigzag-path algorithm, which is based on the movement of the male B. mori, is applied. In order to adapt the biological behavior to large-scale wireless mesh networks, we use a mesh topology for implementing the algorithm. Simulation results show that the total energy used and the decision time for routing of the proposed algorithm are improved under certain conditions.

An Efficient Path-Based Multicast Algorithm in Wormhole-Routed Net works (웜홀 방식의 네트워크에서 경로전송을 기반으로 하는 효율적인 다중전송 알고리즘)

  • 김시관
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.20-28
    • /
    • 2001
  • In this paper, we present an efficient path-based multicast algorithm in wormhole-routed mesh networks. Our algorithm is based on a network partitioning strategy that uses two Hamiltonian paths. In the previous studies, only on a network partitioning strategy that uses two Hamiltonian paths. In the previous studies, only one Hamiltonian path was used. Thus messages traverse mire horizontal channels than vertical ones, leading to earlier network congestion. By incorporating additional vertical Hamiltonian path as well as the horizontal Hamiltonian path, messages are distributed evenly as much as possible, thus making network evenly as much as possible, thus making network performance better. We prove that this algorithm is deadlock-free. And by extensive simulations, we show that this algorithm is superior to the previous ones by 15∼20%.

  • PDF