• Title/Summary/Keyword: Path velocity accuracy

Search Result 23, Processing Time 0.019 seconds

An estimate of structure-borne sound by the excitation at an arbitrary point on the rectangular plate with fixed edges (주변고정 장방형 평판에 있어서 임의점 가진에 의한 고체전파음의 예측)

  • 김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.21-34
    • /
    • 1988
  • Machinery enclosures are widely adopted to reduce the noise emission in various fields of application. Emitted noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound with different path of propagation. One is the "structure-borne sound", while the other is "air-borne sound". In order to get a most efficient machinery enclouser a prudent consideration upon the above structure-borne and air-borne sound is required, as the guiding principle of contermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subjects for the structure-borne sound, and the specifications of absorbing members and damping panels are the major related matters for the air-borne sound. Hence, it seems very efficient to separate the total sounds into two categories with a great accuracy when one think of further reduction of noise from the existing enclosure, although its separating methods have not been made clear for many years. Author proposes an application method of experimental modal analysis to extract the structure-borne sound from the measured total radiation sound, as the air-borne sound is deduced by the vectorial difference between the measured total radiation sound and the calculated structure-borne sound. In order to calculate the correct structure-borne sound by the excitation at an arbitrary point on the enclosure structure, it is important to decide 1) how to estimate the enclosure's surface vibration velocity and 2) how to compute the radiation sound which is considered as the effect of vibration modes of enclosure surface. The former can be solved with total frequency response function calculated by the application of experimental modal analysis. The latter is to be solved by the author's new approaches for radiation sound computation by means of the Rayleigh's integral equation and the boundary-element method applied complex surface vibration velocity. As a first step, structure-borne sound by the excitation at an arbitry point on the rectangular plate with fixed edges, has been calculated to verified the reliability of the developed computation methods. The results of calculation show good agreements with those of the actual measurements.actual measurements.

  • PDF

A Field Application of 3D Seismic Traveltime Tomography (I) - Constitution of 3D Seismic Traveltime Tomography Algorithm - (3차원 탄성파 토모그래피의 현장 적용 (1) - 3차원 토모그래피 알고리즘의 구성 -)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.202-213
    • /
    • 2008
  • In this study, theoretical approach of 3D seismic traveltime tomography was investigated. To guarantee the successful field application of 3D tomography, appropriate control of problem associated with blind zone is pre-requisite. To overcome the velocity distortion of the reconstructed tomogram due to insufficient source-receiver array coverage, the algorithm of 3D seismic traveltime tomography based on the Fresnel volume was developed as a technique of ray-path broadening. For the successful reconstruction of velocity cube, 3D traveltime algorithm was explored and employed on the basis of 2nd order Fast Marching Method(FMM), resulting in improvement of precision and accuracy. To prove the validity and field application of this algorithm, two numerical experiments were performed for globular and layered models. The algorithm was also found to be successfully applicable to field data.

Development and Application of IoT-based Contactless Ultraosonic System (IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용)

  • Kim, Jihwan;Hong, Jinyoung;Kim, Rrulri;Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.70-79
    • /
    • 2020
  • The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.