• Title/Summary/Keyword: Path set

Search Result 752, Processing Time 0.027 seconds

Essential Arcs of a Directed Acyclic Graph

  • Chung, Ee-Suk
    • Management Science and Financial Engineering
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • Among many graphs, directed acyclic graph(DAG) attracts many researchers due to its nice property of existence of topological sort. In some classic graph problems, it is known that, if we use the aforementioned property, then much efficient algorithms can be generated. So, in this paper, new algorithm for the all-pairs shortest path problem in a DAG is proposed. While the algorithm performing the iteration, it identifies the set of essential arcs which requires in a shortest path. So, the proposed algorithm has a running time of $O(m^*n+m)$, where m, n and $m^*$ denote the number of arcs, number of node, and the number of essential arcs in a DAG, respectively.

A Self-Healing Routing Technique for Mobile Ad Hoc Networks (이동 애드 혹 네트워크를 위한 자가치유 라우팅기법에 관한 연구)

  • Park, Seong-Ho;Yoon, Won-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.167-168
    • /
    • 2006
  • Mobile Ad Hoc Networks (MANETs) has the characteristics such as dynamic network topology, constrained power capacity, constrained wireless bandwidth and quality, etc. For MANETs AODV (Ad-Hoc On-Demand Distance Vector) routing protocol has been proposed. However AODV routing protocol has some inefficiency related to re-routing path establishment corresponding to node's failure. In this paper, we propose a Self-Healing Routing Technique for MANETs that uses the one-hop nodes from the failed node to set up the routing path efficiently. We also include simulation results to show the performance of our method.

  • PDF

A Framework for Determining Minimum Load Shedding for Restoring Solvability Using Outage Parameterization

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.73-78
    • /
    • 2004
  • This paper proposes a framework for determining the minimum load shedding for restoring solvability. The framework includes a continuation power flow (CPF) and an optimal power flow (OPF). The CPF parameterizes a specified outage from a set of multiple contingencies causing unsolvable cases, and it traces the path of solutions with respect to the parameter variation. At the nose point of the path, sensitivity analysis is performed in order to achieve the most effective control location for load shedding. Using the control location information, the OPF for locating the minimum load shedding is executed in order to restore power flow solvability. It is highlighted that the framework systematically determines control locations and the proper amount of load shedding. In a numerical simulation, an illustrative example of the proposed framework is shown by applying it to the New England 39 bus system.

Implementation of Dynamic Programming Using Cellular Nonlinear Neural Networks (셀룰라 비선형 회로망에 의한 동적계획법의 구현)

  • Park, Jin-Hee;Son, Hong-Rak;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3060-3062
    • /
    • 2000
  • A fast optimal path planning algorithm using the analog Cellular Nonlinear Circuits (CNC) is proposed. The proposed algorithm compute the optimal path using subgoal-based dynamic programming algorithm. In the algorithm, the optimal paths are computed regardless of the distance between the initial and the goal position. It begins to find subgoals starting from the initial position when the output of the initial cell becomes nonzero value. The suboal is set as the initial position to find the next subgoal until the final goal is reached. Simulations have been done considering the imprecise hardware fabrication and the limitation of the magnitude of input value.

  • PDF

The Path Planning for Mobile Robot Using the Line Segment Information (선소 정보를 이용한 로봇의 경로계획)

  • Kim, Byung-Gon;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.514-516
    • /
    • 1998
  • A Mobile Robot should be able to navigate safely in the workspaces without any additional human's helps. In this paper, a method to generate the safe path to avoid the unknown obstacles using the pre-knowledge of the workspaces was proposed. For the efficiency of the algorithm, it is proposed to model the obstacles as the line segments in numerical map, which can reduce the required memory size and give the simple forms. To make the environments map, we used the Hough transform and the sonar measurements is converted to the set of line segments by Hough transform. In this algorithm, the subgoals are generated to avoid the obstacles until a mobile robot arrives the final position using the proposed environmental model.

  • PDF

A Mathematical Approach to Time-Varying Obstacle Avoidance of Robot manipulators (로보트의 시변 장애물 회피를 위한 수학적 접근 방법)

  • 고낙용;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.809-822
    • /
    • 1992
  • A mathematical approach to solving the time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in robot joint space(JS). View-time concept is used to deal with time-varying obstacles. The view-time is the period in which a time-varying obstacles. The view-time is the period in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is the volume swept by the time-varying obstacle for the view-time. The swept volume is transformed into the JS obstacle that is the set of JS robot configurations causing the collision between the robot and the swept volume. In JS, the path avoiding the JS obstacle is planned, and a trajectory satisfying the constraints on robot motion planning is planned along the path. This method is applied to the collision-free motion planning of two SCARA robots, and the simulation results are given.

An Algorithm for Automatic Guided Vehicle Scheduling Problems (자동유도운반차 (Automatic Guided Vehicle) 스케쥴링 해법)

  • Park, Yang-Byeong;Jeon, Deok-Bin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.1
    • /
    • pp.11-24
    • /
    • 1987
  • Automatic Guided Vehicle Systems feature battery powered driverless vehicles with programming capabilities for path selection and positoning. Vehicles serve the machines in shop, following a guide path system installed on the shop floor. The basic problem in the system is to determine a fixed set of vehicle routes of minimal total distance(time) while keeping capacity and distance(time) constraints. In this paper, a heuristic algorithm is presented for scheduling the automatic guided vehicles. The algorithm routes the machines based on their distances and polor coordinate angles, taking into account the structural feature of the system. Computational experiments are performed on several test problems in order to evaluate the proposed algorithm. Finally, a framework for dealing with the case where supplies from the machines are probabilistic is described.

  • PDF

A New Conceptual Framework for Designing Ubiquitous Business Model (유비쿼터스 비즈니스 모델 설계를 위한 개념적 프레임워크 개발)

  • Lee, Young-Ho;Kim, Hye-Won;Kim, Young-Jin;Sohn, Hawk
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • In this paper, we explore the ubiquitous system that provides new business opportunities in the context of digital convergence. Exploiting the value network of the proposed ubiquitous system, we analyze strategic market drivers that define the speed and direction of the evolution path for ubiquitous industries. Motivated by the dynamic growth of ubiquitous industry, we design a set of ubiquitous business models that pave the way for firms to identify profitable business cases. In addition, we analyze the evolution path of the proposed business model such that the model can be implemented in the life-cycle of ubiquitous industry. Futhermore, we develop a modeling framework for selecting a suitable business model and for evaluating the performance of the selected business model.

A Heuristic Algorithm for Multi-path Orienteering Problem with Capacity Constraint (용량제약이 있는 다경로 오리엔티어링 문제의 해법에 관한 연구)

  • Hwang, Hark;Park, Keum Ae;Oh, Yong Hui
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.303-311
    • /
    • 2007
  • This study deals with a type of vehicle routing problem faced by manager of some department stores during peak sales periods. The problem is to find a set of traveling paths of vehicles that leave a department store and arrive at a destination specified for each vehicle after visiting customers without violating time and capacity constraints. The mathematical model is formulated with the objective of maximizing the sum of the rewards collected by each vehicle. Since the problem is known to be NP-hard, a heuristic algorithm is developed to find the solution. The performance of the algorithm is compared with the optimum solutions obtained from CPLEX for small size problems and a priority-based Genetic Algorithm for large size problems.

Real-Time Motion Blur Using Triangular Motion Paths

  • Hong, MinhPhuoc;Oh, Kyoungsu
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.818-833
    • /
    • 2017
  • This paper introduces a new algorithm that renders motion blur using triangular motion paths. A triangle occupies a set of pixels when moving from a position in the start of a frame to another position in the end of a frame. This is a motion path of a moving triangle. For a given pixel, we use a motion path of each moving triangle to find a range of time that this moving triangle is visible to the camera. Then, we sort visible time ranges in the depth-time dimensions and use bitwise operations to solve the occlusion problem. Thereafter, we compute an average color of each moving triangle based on its visible time range. Finally, we accumulate an average color of each moving triangle in the front-to-back order to produce the final pixel color. Thus, our algorithm performs shading after the visibility test and renders motion blur in real time.