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Abstract 
This paper introduces a new algorithm that renders motion blur using triangular motion paths. A triangle 
occupies a set of pixels when moving from a position in the start of a frame to another position in the end of a 
frame. This is a motion path of a moving triangle. For a given pixel, we use a motion path of each moving 
triangle to find a range of time that this moving triangle is visible to the camera. Then, we sort visible time 
ranges in the depth-time dimensions and use bitwise operations to solve the occlusion problem. Thereafter, 
we compute an average color of each moving triangle based on its visible time range. Finally, we accumulate 
an average color of each moving triangle in the front-to-back order to produce the final pixel color. Thus, our 
algorithm performs shading after the visibility test and renders motion blur in real time. 
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1. Introduction 

Motion blur effect gives us a sense of speed and movement in images. This effect is generated when 
we capture an image and objects move relative to the camera during the exposure time. The motion 
blur effect is widely used in off-line rendering but it is a difficult problem in real-time rendering because 
it requires the visibility problem to be solved in the space-time dimensions [1]. During one frame 
rendering, there are many animating objects in a scene. Time at the start and the end of a frame is t=0 
and t=1, respectively. At a certain time t ∈ [0, 1], we need to determine which geometry is visible for a 
given pixel. And solving the visibility problem in the space-time dimensions is performing such 
visibility determination at many different times and averaging results. 

A moving triangle only occupies a pixel in a range of time during one frame rendering. Many motion 
blur rendering algorithms have been proposed to approximate or analytically find such a range of time. 
But those algorithms produce ghosting artifacts or noisy images at low sampling rates. Increasing the 
sampling rate impacts performance significantly. 

In this paper, we propose a new algorithm that renders motion blur using triangular motion paths. 
First, we triangulate a motion path of each triangle then use the ability of GPU to find a visible time 
range of this triangle. Thereafter, we sort visible time ranges in the depth and time dimensions and then 
use bitwise operations to resolve the occlusion problem. Finally, we blend all moving triangles in the 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received January 6, 2017; first revision February 28, 2017; accepted April 7, 2017. 

Corresponding Author: MinhPhuoc Hong (hmphuoc1985@gmail.com) 

* Dept. of Media, Soongsil University, Seoul, Korea (hmphuoc1985@gmail.com, oks@ssu.ac.kr) 

J Inf Process Syst, Vol.13, No.4, pp.818~833, August 2017 ISSN 1976-913X (Print) 

https://doi.org/10.3745/JIPS.02.0066 ISSN 2092-805X (Electronic) 



MinhPhuoc Hong and Kyoungsu Oh 

 

 

J Inf Process Syst, Vol.13, No.4, pp.818~833, August 2017 | 819 

front-to-back order based on their visible time range. Thus, our algorithm can render noise-free and 
blurred images at interactive frame rates. 

Our contributions are: 
� Using triangular motion paths and the power of GPU to find a range of time that a triangle 

visible to a pixel during one frame rendering. 
� Supporting the mipmapping technique to compute an average color of a moving triangle in its 

visible time range. 
� Using a sorting algorithm in the depth-time dimensions and bitwise operations to solve the 

occlusion problem between moving triangles. 

This paper is organized as follows. We discuss related works in Section 2. Section 3 describes our 
algorithm and Section 4 describes the implementation. Finally, we present results and discuss some 
issues in Section 5. 

 
 

2. Related Works 

Post-processing methods: Rosado [2] and Sousa [3,4] describe algorithms that render motion blur in 
real time and these methods are widely used in interactive games. However, these algorithms render 
geometries at a certain time and then use a filter to produce blurred images. Therefore, the visibility 
problem in the space-time dimensions is improperly handled. Later, McGuire et al. [5] use the scatter-
as-gather based approach to generate blurred images. Scatter operations are operations that scatter a 
pixel’s color to its neighbor, and gather operations are operations that gather color samples from 
neighboring pixels. A scatter-as-gather based approach is a post-processing method that converts 
scatter operations into gather operations in a post-processing pass. A scene has many animating 
geometries so each geometry might cover many pixels. Therefore, instead of scattering a pixel’s color to 
its neighbor, a scatter-as-gather based approach gathers samples from neighboring pixels based on the 
current pixel’s velocity. McGuire et al. [5] generate two intermediate buffers from a velocity buffer. For 
each pixel, the first intermediate buffer (TileMax) stores a velocity vector that has the largest magnitude 
in every k×k tile; and the second intermediate buffer (NeighborMax) stores a velocity vector that has the 
largest magnitude from the neighboring pixels. For each pixel, this method extracts a maximum 
velocity vector from the NeighborMax buffer and then samples along this vector. Consequently, result 
images have artifacts as objects move at different speeds and directions. Guertin et al. [6] improve an 
algorithm described by McGuire et al. [5] and produce high-quality blurred images by sampling along a 
maximum velocity vector and a pixel’s velocity vector. Yet this algorithm does not completely solve the 
problem. We refer readers to McGuire et al. [5] for some older post-processing algorithms which use 
extruded geometry to render motion blur but those algorithms have the same visibility problem of post-
processing approach. 

Most algorithms assume an object moves linearly so it might produce artifacts as rendering fast 
motion. A scattering based rendering approach described by Guertin and Nowrouzezahrai [7] renders 
motion blur effect for non-linear motion. They represent a curve by a list of lines with each line has a 
constant color. Furthermore, they store a color and a weight at each pixel then use additive alpha 
blending to store all scatter operations. Finally, a color of each pixel is computed based on the 
contribution of the other pixels in the post-process pass. This approach has a high performance and 
partially address the visibility. 
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Brute-force methods: Haeberli and Akeley [8] and Korein and Badler [9] render geometries many 
times and average result images at each pixel using accumulation buffering. These algorithms have 
discrete ghosting artifacts due to under-sampling, but increasing the number of samples per pixel 
significantly impacts performance. Therefore, they are not suitable for real-time rendering. 

Stochastic sampling methods: Cook et al. [10] distribute rays in the space-time dimensions and then 
averages all visible rays for the pixel color. Akenine-Moller et al. [11] have a similar idea but they use 
time-continuous triangles and require a new hardware for implementation. McGuire et al. [12] 
implement an idea described by Akenine-Moller et al. [11] on GPU using multi-sample antialiasing and 
2D screen-space convex hulls or bounding boxes as space-time bounding volumes to render motion 
blur. Each sample has random time information which is used to locate the position of a moving 
triangle and then the visibility of this sample is determined through a ray-triangle intersection test. All 
visible samples are shaded and averaged to make the final pixel color. Thus, this method reduces the 
geometry rendering cost but suffers from noise at low sampling rates. Authors use multi-sampling to 
reduce to perform shading once per pixel, this improves performance but introduces an error as 
samples in the same pixel belong to different triangles. Furthermore, large bounding shape might result 
in a large number of intersection tests. A method described by Munkberg et al. [13] significantly 
reduces the amount of this test using hierarchical tile test with temporal overlap. However, this 
technique is implemented in a software rasterization. To reduce the number of ray-triangle tests, Laine 
et al. [14] construct a screen-space bounding for (u, v, t) and then determine t and (u, v) intervals for 
each tile. Subsequently, they test all samples in the current tile within those intervals. However, the 
computation cost for each tile impacts performance substantially. 

Analytical methods: Our research is inspired by the analytical visibility approaches described by 
Korein and Badler [9], Newell et al. [15], and Grant [16]. Korein and Badler [9] compute a covering 
interval of each geometry for a given pixel. Then, they handle the interval occlusion and resolve these 
intervals for the final pixel color. We similarly find a time interval of each moving triangle by exploiting 
the standard rasterization then removing occluded intervals using a sorting in the depth-time 
dimensions and bitwise operations. Our sorting algorithm is analogous to a method described by 
Newell et al. [15] and polyhedron clipper described by Grant [16]. 

Gribel et al. [17] describe a rasterizer, based on time-dependent edge equations, to analytically solve 
the visibility in the space-time dimensions for motion blur rendering. This algorithm uses a software 
rasterizer so it does not utilize the power of GPUs. 

Other methods: We refer readers to other algorithms described by Ragan-Kelley et al. [18] and 
Clarberg and his colleagues [19,20] for decoupling sampling from the visibility and algorithms 
described by Andersson et al. [21], Clarberg and Munkberg [22] for reusing shading or Johannes et al. 
[23] for a different effect since these methods are beyond the scope of this paper. 

 
 

3. Algorithm 

3.1 Background 
 

When a triangle moves from a position in the start of a frame to another position in the end of a 
frame, it creates a motion path. The brute force method renders many times along the motion path of a 
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moving triangle then averages all rendered images to produce a blurred image, Fig. 1. In other words, 
this method samples a triangle uniformly in time dimensions. For instance, the triangle is sampled 
every 0.01 second. As a result, this method has ghosting artifacts at low sampling rates. 

 

 

     (a)                                                        (b) 

Fig. 1. (a) A triangle with its motion path from ABC to A’B’C’. (b) The brute force method generates a 
blurred image by rendering many times. At a given pixel X, all rendered images are averaged to produce 
the final color. 

 
Contrary to the brute force method, stochastic sampling based methods render the moving triangle 

once using two positions at the start and the end of its motion path. These methods assume that two 
positions at the start and the end of a motion path are defined at time t=0 and t=1, respectively. From 
two triangles at t=0 and t=1, these methods build a space-time bounding volume in Fig. 2. McGuire et 
al. [12] use such a bounding volume as a convex hull. To do the visibility test and render motion blur, 
these methods use multi-sampling with each sample has a random time t ∈ [0, 1]. At a random time, t, 
vertices are linearly interpolated along edges. For example, At, Bt and Ct are linearly interpolated along 
AA’, BB’ and CC’ in Fig. 2, respectively. After that, the visibility determination is done through ray-
triangle intersection tests. A ray is shot from the camera through the current pixel. If there is an 
intersection between the ray and AtBtCt, the current sample is visible and its color is computed. Finally, 
all visible samples are averaged to produce the final pixel color. By this way, these methods randomly 
sample a triangle in the space-time dimensions. Therefore, a blurred image has noise at low sampling 
rates. 

 

 

(a)                                                     (b) 

Fig. 2. (a) A triangle moves linearly from the start (t=0) to the end of frame (t=1). (b) A space-time 
bounding volume of the triangle is made from ABC and A’B’C’. The red highlighted triangle is the 
triangle’s position at a random time t. A ray-triangle intersection test is performed at a given pixel X. 
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Since above methods do not know a visible time range of the moving triangle at the pixel X, so the 
brute force method and stochastics sampling methods use uniform sampling and randomly sampling in 
the time dimension, respectively. In our work, we use the standard rasterization of GPU to generate 
such a visible time range at the pixel X. Hence our algorithm avoids rendering many times and does not 
perform the visibility tests manually. The main idea of our algorithm will be described in the next 
section. 

 
3.2 Main Idea 
 

The same triangle in Figs. 1 and 2 is used to illustrate the main idea of our algorithm in Fig. 3. We 
also assume that a triangle linearly moves from the start to the end of a frame. At the start and the end 
of a motion path, the triangle is ABC and A’B’C’, respectively. We use two triangles ABC and A’B’C’ to 
make a motion path. Each vertex has a time (t) and texture coordinates (uv). We triangulate the motion 
path and send to the next stage in GPU. For each pixel GPU, there are two points generated; each point 
has an interpolated time (t) and interpolated texture coordinates (uv). For instance, such two points are 
P1 and P2 in Fig. 3. Consequently, for a given pixel we know a range of time that this triangle is visible at 
the pixel X. We then compute opacity and color of this triangle for the pixel X. Opacity indicates a 
visible time range of a moving triangle at a pixel, and at the pixel X the moving triangle is only visible 
from t=0 to t=α so opacity is α. If we call texture coordinates of P1 and P2 are uv1 and uv2, respectively, 
the color of this moving triangle can be approximated by averaging texture colors along a line segment 
between uv1 and uv2. In this way, our method solves the visibility problem analytically and render 
motion blur. 

 

 

                                     (a)                                                   (b)                                                     (c) 

Fig. 3. (a) A triangle moves linearly from t=0 to t=1. (b, c) A color and opacity of an extruded triangle 
for a given pixel X. P1 and P2 are two visible fragments at the pixel X. P1 has (t=α, uv1) and P2 has (t=0, uv2). 

 
When there are many moving triangles in a general case, we make many triangular motion paths and 

solve the occlusion problems using a sorting algorithm in the depth-time dimensions, in Section 3.3. 
Finally, average color of each motion path is accumulated, in Section 3.4. 

 
3.3 A Sorting Algorithm in the Depth-Time Dimensions 
 

In Section 3.2, we described our main idea to render motion blur using a triangular motion path 
when there is only one a moving triangle. Yet in a general case, there are many triangles covering the 
same pixel during one frame rendering. Therefore, we need to make and sort triangular motion paths in 
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the front-to-back order prior to the blending. To that end, we use an interval to represent a triangular 
motion path and then apply a sorting algorithm which is modified from Grant [16] on intervals. Finally, 
we use bitwise operations to solve the occlusion problem. 

Interval generation: From now on, we use an interval to denote a visible time range of a moving 
triangle for a given pixel during one frame rendering. One interval is made from two fragments which 
are generated from a triangular motion path by GPU. For each interval, we store a minimum depth, a 
maximum depth and time information as shown in Fig 4. 

 

 

Fig. 4. An interval in the depth-time dimensions. 
 
Note that if two triangles at t=0 (ABC) and at t=1 (A’B’C’) twist, there are four generated fragments at 

a pixel in Fig. 5. In such cases, we can make two intervals from four fragments of a triangular motion 
path. We first sort these four fragments by the distance from the camera and then use every two 
fragments to make an interval. 

 

 

Fig. 5. A triangle rotates from ABC at t=0 to A’B’C’ at t=1. For a given pixel P, instead of two fragments, 
GPU generates four fragments. 

 
Sorting: We compute a line equation for each interval using its depth and time. Then, we represent 

an interval as a 2D line segment in the depth-time dimensions. And we sort these intervals in the front-
to-back order using a modified depth sorting algorithm which can be briefly summarized as follows: 
first, we sort all intervals by the minimum depth in ascending order. If two intervals intersect, we find 
and use the intersection point to divide these two intervals into four shorter intervals. Thereafter, we 
check the following conditions with each pair of intervals (H, K). 

1. Check whether there is no depth overlap between H and K. 
2. Check whether there is no time overlap between H and K. 
3. Check whether K is entirely behind H from the camera. (Use H’s line equation). 
4. Check whether H is entirely front of K from the camera. (Use K’s line equation). 
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If any condition is true, we keep the current order and advance to the next pair. Otherwise, we swap 
these two intervals. 

 

 

                                     (a)                                                      (b)                                                           (c) 

Fig. 6. (a) Two triangles move from t=0 to t=1. (b) The top view of two moving triangles. The two red 
dashed lines intersect with a ray shot from the camera at two certain times and two intersection points 
are R1 and R2. It is the same with the two black dashed lines. (c) Intersection points of the red and the 
black triangle with the ray are denoted by two line segments in the depth and time dimensions. 

 
Fig. 6 shows the basic idea of our sorting algorithm with two moving triangles at the start (t=0) and at 

the end (t=1) of a motion path. From the top view, we can see that the red triangle intersects with a ray 
shot from the camera through a pixel P at R1 and R2. It means that the red triangle is visible at the pixel 
P at two certain times which are 0.27 and 0.57. Similarly, the black triangle is visible at the pixel P at 0.4 
and 0.5. First, we use depth and time information of R1 and R2, B1 and B2 to make two line segments 
(intervals). Then, we apply the sorting on these two intervals in the depth and time dimensions. As can 
be seen in the rightmost of Fig. 6, two intervals overlap in both depth and time dimensions but the 
interval B1B2 is completely behind the interval R1R2 with respect to the distance from the camera. 
Therefore, the interval R1R2 is closer to the camera than the interval B1B2. 

 
3.3 Bitwise Operations in Blending 
 

After sorting, we traverse the sorted interval list in the front-to-back order to compute and remove 
occluded regions in each interval. Then, we do the blending based on each interval. An interval is a time 
range that a moving triangle is visible at the current pixel after resolving the occlusion problem. To 
calculate a visible time range of each moving triangle, we convert time information of an interval to an 
unsigned integer and then use bitwise operations to solve the occlusion problem. In an array of bits, ‘0’ 
bit means invisible and ‘1’ means visible; ith bit is the visibility in [i/n, (i+1)/n] where n is the total 
number of bits. In Fig. 7, the “accum_mask” is a mask used for accumulating visible time ranges of 
previous moving triangles and the “curr_mask” is a visible time range of the current moving triangle 
before and after solving the occlusion problem, respectively. These two masks overlap at some bits 
which are highlighted in the “curr_mask”. It means that a time range of the current moving triangle is 
occluded at those bits. We call such highlighted bits as occluded bits. Therefore, to solve the occlusion 
problem we just change all ‘1’ bits to ‘0’ bits at occluded bits using NOT and AND operators. We then 
compute and add the current moving triangle’s average color to the pixel color based on its visible time 
range. Thereafter, we use OR operator to accumulate the overall visible time range. During blending if 
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all bit values of “accum_mask” are ‘1’ we can stop the traversal. After blending all intervals if the 
‘accum_mask’ is not 1, we add the background color to the pixel color based on the number of ’0’ bits in 
the “accum_mask”. 

 

 

Fig. 7. The occlusion problem between intervals is solved using bitwise operations. 
 
 

4. Implementation 

4.1 System Overview 
 

Fig. 8 shows the flowchart of our algorithm. In the first pass, all vertices are transformed from the 
object space into the view space in the vertex shader. Then, the geometry shader uses six vertices at the 
start and the end of a frame to make a triangular motion path, in Section 4.2. In the pixel shader, we 
store all fragments into a buffer as a per-pixel linked list using the current fragment’s information, in 
Section 4.3. 

 

 
Fig. 8. A flowchart of our algorithm. 

 
In the second pass, we do the same thing as another OIT algorithm [24] to load all fragments 

belonging to the current pixel then sort (in Section 3.3) and blend all intervals (in Section 3.4). Since the 
cost of swapping intervals is more expensive than the cost of comparison as sorting, we use the selection 
sort instead of insertion sort. 

To compute an average color of an interval, we linearly interpolate texture coordinates (uv) many 
times from uv1 to uv2 of the current interval and then do the texture sampling using a computed 
mipmap level. Subsequently, we average all texture colors to produce the average color of the current 
interval. For clarity of the presentation, we describe how to compute the mipmap level in Section 4.4. 

When solving the occlusion problem between intervals, we observe that varying the number of bits in 
a coverage mask from 32 to 128 only increases the render time about 0.3 ms and there is no big 
difference in blurred images. Therefore, we use 128 bits for a coverage mask. 
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In the second pass, we fix the maximum number of intervals per pixel at 90. Rendering a high depth 
complexity scene requires a large number of intervals. If the required number of intervals is larger than 
the maximum number of intervals per pixel, the visibility is solved incorrectly. Because there is not 
enough space to store some visible intervals, thereby we cannot accumulate these intervals’ color to the 
pixel color. But in practice, we observe that using 90 intervals per pixel produces plausible blurred 
images. Note that in low depth complexity scenes, we can reduce the maximum number of intervals per 
pixel to increase performance. 

 
4.2 Triangular Motion Path Generation 

 
This section describes how to make and output a triangular motion path in the geometry shader. The 

input of this step is six vertices in the view space and the output is a triangular motion path in the clip 
space. Fig. 9 illustrates this step. Each moving edge generates a bilinear surface, for example, an edge 
moving from AB (t=0) to A'B' (t=1) generates a bilinear surface ABB'A'. For each bilinear surface, we 
average its four vertices to make a center vertex and then assign t=0.5 for the center vertex. For instance, 
H, L and K are center vertices of bilinear surfaces ABB'A', BB'CC' and AA'C'C. As computing center 
vertices, we average not only vertices’ positions but also texture coordinates and normal vectors. 
Thereafter, we use a center vertex of each bilinear surface to subdivide it to four triangles. Finally, we 
emit 12 triangles from three triangulated surfaces and two input triangles. 

 

 

Fig. 9. Triangular motion path generation in the geometry shader. Three edges moving from t=0 to t=1 
generate three bilinear surfaces. We compute a center vertex for each bilinear surface then use the 
center vertex to triangulate the bilinear surface. Vertices A, B, C have t=0 and vertices A'B'C' have t=1. 
All center vertices (H, K, L) have t=0.5. 

 
Each moving edge is represented by a pair of edges, i.e., one at t=0 and the other at t=1. For example, 

the first moving edge is represented by a pair of edges (AB, A'B'). When there is an intersection between 
two edges of a pair in the screen space, a moving edge does not generate a bilinear surface anymore. In 
such cases, we find an intersection point then use it to emit two triangles for the side surface. We briefly 
describe how to find an intersection point between two edges of a pair in the screen space and we refer 
readers to a method described by Akenine-Moller et al. [25] for details. 
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Consider two segments (edges) �� � � � �������� ∗ 	 and CD� 
 � 
������� ∗ �. We use a perp dot product 
(PDP) of AB and CD to check if AB intersects CD. A PDP of two vectors is a dot product where the first 
vector is replaced by a perpendicular vector rotated 90° to the left. A value returned from PDP(AB, CD) 
is an area of the parallelogram spanned by AB and CD, in Fig 10. So if PDP(AB, CD) equals to 0, there is 
no intersection. 

 

 
Fig. 10. Perp dot product (PDP) of AB and CD. 

 
Otherwise, we compute two variables (s and u) as follows: 
 

� �
������,���

�����	,���
, 	� �	


�
��,���


�
��,���
                                                 (1) 

 

There is an intersection and it only insides AB and CD if s, u ∈ [0, 1]. 
 

 

Fig. 11. A special case of generating a triangular motion path in the geometry shader. Left: Six input 
vertices (A, B, C at t=0) and (A', B', C' at t=1). Right: Three side surfaces are triangulated based on the 
intersection check between two edges (AB, A'B'), (AC, A'C'), (BC, B'C'). 

 
If there is an intersection between two edges of a pair, we compute all intersections’ information 

using the perspective interpolation along corresponding edges. Finally, we emit all triangles. In this 
case, 10 triangles are emitted in Fig. 11. 
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4.3 Per-Pixel Linked List 
 

In this section, we briefly describe how to store and load all fragments as a per-pixel linked list. It is 
analogous to Barta et al. [24], Burns and Hunt [26], and Salvi et al. [27]. In our work, a fragment stores 
a depth, texture coordinates, a time, a normal vector, a texture id and a next pointer. To achieve this, we 
use two buffers in total: a fragment buffer and a start-index buffer. 

The fragment buffer stores rasterized fragments and each fragment has an index pointer which is 
used to access the next fragment in the fragment buffer. If an index pointer is ‘-1’, this is an end of a list. 

The start-index buffer has the same resolution with the render target and stores start-index values. 
Thus for each pixel, it maps exactly to one element in the start-index buffer. 

Fig. 12 shows an example of this step. At the beginning, a counter is initialized to ‘0’, all values in the 
start-index buffer and the “Next” pointer in the fragment buffer is initialized to ‘-1’. As rendering the 
red triangle, we map to a position in the start-index buffer then store the counter’s value and get the 
original index value. Considering the first fragment of the red triangle, we store ‘0’ at (1, 1) in the start-
index buffer then get ‘-1’. And we store this fragment to the fragment buffer at ‘0’ index then assign the 
“Next” pointer to ‘-1’. Finally, we increase the counter’s value one unit using an atomic operation. In 
this way, we store all four fragments of the red triangle, Fig. 12. As rendering the blue triangle, we store 
all fragments of the blue triangle in the same way. However, we get ‘2’ and ‘3’ when storing ‘5’, ‘6’ at 
positions (2, 2), (2, 3) in the start-index buffer, respectively. The ‘2’ and ‘3’ values are used to assign to 
the “Next” pointer in Fig 12. Thus, we can link and store fragments in a per-pixel linked list. 

 

 

(a)                                                                                   (b) 

Fig. 12. Demonstration for storing all fragments in a per-pixel linked list. (a) Rendering and storing 
fragments of the first (red) triangle. (b) Rendering and storing fragments of the second (blue) triangle. 
“R” and “B” are generated fragments of the red and blue triangles, respectively. The start-index buffer 
stores start-index values which are used to extract fragment in the fragment buffer. The “Next” pointer 
stores an index of the next fragment, ‘-1’ value represents the end of a list. 

 
To load all fragments at a given pixel, we extract a start-index value from the start-index buffer and 

then use the start-index value to get a fragment in the fragment buffer. Thereafter, we use a next pointer 
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of the current fragment to get the next fragment in the fragment buffer and continuously get all 
fragments until the end of a list (pointer value is –1). 

 
4.4 Mipmapping 
 

In this section, we describe how to apply the mipmapping technique as computing an average color of 
each interval. Generally, GPUs choose the mipmap level by computing finite differences across four 
pixels. In our method, we store a list of intervals at each pixel so such differences may compare different 
intervals. Therefore, the mipmap level may be chosen incorrectly. 

To choose the mipmap level we do as follows. First, we compute the longest distance in uv axes in the 
texture space then divide this distance by the number of texture samples. Next, we use the result to 
calculate the mipmap level using the logarithm. Thus, our blurred images may have the over-blurred 
problem as using a few texture samples. In practice, we observe that using 16 texture samples is 
sufficient to address the over-blurred problem. Computing the mipmap level in this way does not 
measure exactly finite differences in adjacent pixels but it guarantees that the same interval is used for 
computing the mipmap level. This may result in error but increase the blurred image quality. 

 
 

5. Discussion and Results 

All result images are rendered at 1024×768 pixels using GTX 980 6GB with DirectX 11, HLSL 5.0, and 
Phong Shading. We implement the stochastic rasterization method (ST) using fast ray-triangle 
intersection test [28] and multi-sampling. We use 8 samples per pixel for performance comparisons and 
12 samples per pixel for image quality comparisons. 

Figs. 13 and 14 show the image quality comparisons between our method and the stochastic 
rasterization method at the similar render time. It is difficult to make a comparison at the similar time 
so we increase the render time in our method using 128 texture samples. While our result image has the 
similar quality with the reference image, an image rendered by the stochastic rasterization have noise. 

 

 

                Reference                  The stochastic rasterization method     Our method  

Fig. 13. Image quality comparison between our method and the stochastic rasterization method at the 
similar render time (8.6 ms). The reference image is rendered using the accumulation buffer with 3,000 
samples. The stochastic rasterization method uses multi-sampling 12 samples per pixel. Our result 
image is rendered using 90 intervals, 128 texture samples. 
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Fig. 14. Our main test scenes with the depth complexity increase from the left to the right and from the 
top to the bottom. 

 

 

Fig. 15. Performance comparison between our method and the stochastic rasterization algorithm by 
varying the number of random cubes (Fig. 14) from 1,000 to 2,000. From the left to the right, the 
average number of intervals per pixel is 1.67, 2.02, 2.33, 2.73, 3.04 and 3.39, respectively.  

 

Fig. 15 shows the performance comparison between our method and the stochastic rasterization 
method. In this comparison, performance in both methods is impacted by a large number of draw calls. 
In our method, the number of draw calls is the same as the number of random cubes, while ST requires 
more draw calls to generate blurred images. For instance, ST needs to double the number of draw calls 
to use multi-sampling eight samples per pixel because GPU only generates four samples per pixel for a 
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draw call. Thus, the performance in ST is much impacted than ours, especially when using a large 
number of samples per pixel. In theory, the sorting in our method takes O(n2) with n is the number of 
intervals. But in this comparison, since n is small so the sorting does not impact the overall performance 
significantly. 

Fig. 16 shows the impact of the sorting on performance using the test scenes in Fig. 15. This 
measurement is done by toggling on/off the sorting in the second pass. As the depth complexity 
increases, the impact of the sorting also increases. So the sorting is the main bottleneck in our method. 

Due to the memory limitation in GPUs, we cannot store all shading attributes and in the current 
implementation, we assume that all shading attributes are constant as performing shading. 

Our method assumes that geometry moves linearly from the start to the end of a frame so we will 
have visual artifacts when rendering geometries with fast motion. In order to address this problem, we 
can split a motion into smaller parts then process each part using our method, and we leave this for the 
future work. 

 

 

Fig. 16. The impact of the sorting on performance using the test scenes in Fig. 14. From the left to the 
right, the average number of intervals per pixel is 1.67, 2.02, 2.33, 2.73, 3.04 and 3.39, respectively.  

 
 

6. Conclusion 

We have presented a new method to render motion blur in real time using triangular motion paths. 
The basic idea is that a motion path of a moving triangle allows us to find a visible time range of this 
moving triangle for a given pixel. To produce blurred images, we triangulate a motion path then use the 
hardware rasterization to obtain such a visible time range. Subsequently, we use an interval to represent 
a visible time range. And, we solve the occlusion problem by using the sorting algorithm in the depth-
time dimensions in the front-to-back order and applying the bitwise operations on sorted intervals. 
Finally, we compute and accumulate an average color of each interval based on its (updated) visible 
time range to produce the final pixel color. Additionally, we also support the mipmapping technique as 
computing an average color of each interval. 
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