• Title/Summary/Keyword: Path lifetime

Search Result 130, Processing Time 0.027 seconds

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

EEDARS: An Energy-Efficient Dual-Sink Algorithm with Role Switching Mechanism for Event-Driven Wireless Sensor Networks

  • Eslaminejad, Mohammadreza;Razak, Shukor Abd;Ismail, Abdul Samad Haji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2473-2492
    • /
    • 2012
  • Energy conservation is a vital issue in wireless sensor networks. Recently, employing mobile sinks for data gathering become a pervasive trend to deal with this problem. The sink can follow stochastic or pre-defined paths; however the controlled mobility pattern nowadays is taken more into consideration. In this method, the sink moves across the network autonomously and changes its position based on the energy factors. Although the sink mobility would reduce nodes' energy consumption and enhance the network lifetime, the overhead caused by topological changes could waste unnecessary power through the sensor field. In this paper, we proposed EEDARS, an energy-efficient dual-sink algorithm with role switching mechanism which utilizes both static and mobile sinks. The static sink is engaged to avoid any periodic flooding for sink localization, while the mobile sink adaptively moves towards the event region for data collection. Furthermore, a role switching mechanism is applied to the protocol in order to send the nearest sink to the recent event area, hence shorten the path. This algorithm could be employed in event-driven and multi-hop scenarios. Analytical model and extensive simulation results for EEDARS demonstrate a significant improvement on the network metrics especially the lifetime, the load and the end-to-end delay.

Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model (하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘)

  • Kim, Tae-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.165-173
    • /
    • 2008
  • Hybrid ad hoc networks are integrated networks referred to Home Networks, Telematics and Sensor networks can offer various services. Specially, in ad hoc network where each node is responsible for forwarding neighbor nodes' data packets, it should net only reduce the overall energy consumption but also balance individual battery power. Unbalanced energy usage will result in earlier node failure in overloaded nodes. it leads to network partitioning and reduces network lifetime. Therefore, this paper studied the routing protocol considering efficiency of energy. The suggested algorithm can predict the status of energy in each node using the energy prediction model. This can reduce the overload of establishing route path and balance individual battery power. The suggested algorithm can reduce power consumption as well as increase network lifetime.

  • PDF

A Strike and Bargaining Routing Algorithm for Energy-Efficient Wireless Sensor Networks (에너지 효율적 무선 센서 네트워크를 위한 Strike and Bargaining 라우팅 기법)

  • Ko, Seung-Woo;Jeong, Jin Hong;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1186-1194
    • /
    • 2012
  • In order to resolve the energy efficiency in wireless sensor networks, a multihop transmission technique is utilized. However, multihop transmission in wireless sensor networks (WSN) has pros and cons. It reduces total energy consumption, while it may cause a severe decrease in network lifetime. To solve this problem, we suggest the so called strike and bargaining algorithm (SBA). The routing path is determined by wages of nodes. Each node negotiates its wage with their neighbor nodes and determine a reasonable value to reach a optimally balanced point. By analysis and simulations, we show SBA can achieve a near optimal solution.

Power based Routing Scheme for wireless sensor networks (무선 센서네트워크에서의 전력기반 라우팅기법)

  • Ernest, Mugisha;Lee, Geun-Soo;Kim, Namho;Yu, Yun-Seop;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.657-658
    • /
    • 2015
  • In an wireless sensor network, energy efficient routing protocol is important for multi-hop transmission because senor nodes are powered by battery. In multi-hop transmission, specifice nodes are used and the battery power becomes low, it induce the asymetric remaining power among the nodes and makes the network lifetime reduced. In this paper, we propose a power-aware routing protocol which determines the routing path considering the remaining power of the nodes. Simulation results shows that the proposed routing scheme minimize the transmission delay and increase the network lifetime.

  • PDF

Delay and Energy-Aware Routing Algorithm For Energy-Constrained Wireless Networks (무선 Ad-hoc 네트워크환경에서 전송지연과 에너지소비를 고려한 라우팅 알고리즘)

  • Casaquite, Reizel;Hwang, Won-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1799-1805
    • /
    • 2007
  • Wireless Ad-hoc networks may contain nodes of various types of which many can have limited power capabilities. A failure of a node due to energy exhaustion may impact the performance of the whole network hence, energy must be conserved. In this paper, we propose a Delay and Energy-Aware Routing (DEAR) algorithm a multiple metric path cost routing algorithm which considers not only the energy consumed by the node during transmission and reception but as well as the residual energy of the node and the delay incurred during route discovery. Based on our results, DEAR algorithm performs well and maximizes network lifetime by routing flows to nodes with sufficient energy such that the energy consumption is balanced among nodes in proportion to their energy reserves.

Power-aware Relay Selection Algorithm for Cooperative Diversity in the Energy-constrained Wireless Sensor Networks (전력 제한된 무선 센서네트워크에서 협력 다이버시티를 위한 전력인지 릴레이 선택 알고리즘)

  • Xiang, Gao;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.752-759
    • /
    • 2009
  • Cooperative diversity is an effective technique to combat multi-path fading. When this technique is applied to energy-constrained wireless sensor networks, it is a key issue to design appropriate relay selection and power allocation strategies. In this paper, we proposed a new multi-relay selection and power allocation algorithm to maximize network lifetime. The algorithm are composed of two relay selection stages, where the channel condition and residual power of each node were considered in multi-relay selection and the power is fairly allocated proportional to the residual power, satisfies the required SNR at destination and minimizes the total transmit power. In this paper, proposed algorithm is based on AF (amplify and forward) model. We evaluated the proposed algorithm by using extensive simulation and simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

A Modified E-LEACH Routing Protocol for Improving the Lifetime of a Wireless Sensor Network

  • Abdurohman, Maman;Supriadi, Yadi;Fahmi, Fitra Zul
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.845-858
    • /
    • 2020
  • This paper proposes a modified end-to-end secure low energy adaptive clustering hierarchy (ME-LEACH) algorithm for enhancing the lifetime of a wireless sensor network (WSN). Energy limitations are a major constraint in WSNs, hence every activity in a WSN must efficiently utilize energy. Several protocols have been introduced to modulate the way a WSN sends and receives information. The end-to-end secure low energy adaptive clustering hierarchy (E-LEACH) protocol is a hierarchical routing protocol algorithm proposed to solve high-energy dissipation problems. Other methods that explore the presence of the most powerful nodes on each cluster as cluster heads (CHs) are the sparsity-aware energy efficient clustering (SEEC) protocol and an energy efficient clustering-based routing protocol that uses an enhanced cluster formation technique accompanied by the fuzzy logic (EERRCUF) method. However, each CH in the E-LEACH method sends data directly to the base station causing high energy consumption. SEEC uses a lot of energy to identify the most powerful sensor nodes, while EERRCUF spends high amounts of energy to determine the super cluster head (SCH). In the proposed method, a CH will search for the nearest CH and use it as the next hop. The formation of CH chains serves as a path to the base station. Experiments were conducted to determine the performance of the ME-LEACH algorithm. The results show that ME-LEACH has a more stable and higher throughput than SEEC and EERRCUF and has a 35.2% better network lifetime than the E-LEACH algorithm.

Estimation of Residual Useful Life and Tracking of Real-time Damage Paths of Rubble-Mound Breakwaters Using Stochastic Wiener Process (추계학적 위너 확률과정을 이용한 경사제의 실시간 피해경로 추적과 잔류수명 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.147-160
    • /
    • 2020
  • A stochastic probabilistic model for harbor structures such as rubble-mound breakwater has been formulated by using the generalized Wiener process considering the nonlinearity of damage drift and its nonlinear uncertainty, by which the damage path with real-time can be tracked, the residual useful lifetime at some age can also be analyzed properly. The formulated stochastic model can easily calculate the probability of failure with the passage of time through the probability density function of cumulative damage. In particular, the probability density functions of residual useful lifetime of the existing harbor structures can be derived, which can take into account the current age, its present damage state and the future damage process to be occurred. By using the maximum likelihood method and the least square method together, the involved parameters in the stochastic model can be estimated. In the calibration of the stochastic model presented in this paper, the present results are very well similar with the results of MCS about tracking of the damage paths as well as evaluating of the density functions of the cumulative damage and the residual useful lifetime. MTTF and MRL are also evaluated exactly. Meanwhile, the stochastic probabilistic model has been applied to the rubble-mound breakwater. The related parameters can be estimated by using the experimental data of the cumulative damages of armor units measured as a function of time. The theoretical results about the probability density function of cumulative damage and the probability of failure are very well agreed with MCS results such that the density functions of the cumulative damage tend to move to rightward and the amounts of its uncertainty are increased as the elapsed time goes on. Thus, the probabilities of failure with the elapsed time are also increased sharply. Finally, the behaviors of residual useful lifetime have been investigated with the elapsed age. It is concluded for rubble-mound breakwaters that the probability density functions of residual useful lifetime tends to have a longer tail in the right side rather than the left side because of the gradual increases of cumulative damage of armor units. Therefore, its MRLs are sharply decreased after some age. In this paper, the special attentions are paid to the relationship of MTTF and MRL and the elapsed age of the existing structure. In spite of that the sum of the elapsed age and MRL must be equal to MTTF deterministically, the large difference has been shown as the elapsed age is increased which is due to the uncertainty of cumulative damage to be occurred in the future.

Traffic Load & Lifetime Deviation based Power-aware Routing Protocol for MANET (MANET에서 트래픽 부하와 노드 수명 편차에 기반한 power-aware 라우팅 프로토콜)

  • Kim, Dong-Hyun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.5
    • /
    • pp.395-406
    • /
    • 2006
  • In ad hoc networks, the limited battery capacity of nodes affects a lifetime of network Recently, a large variety of power-aware routing protocols have been proposed to improve an energy efficiency of ad hoc networks. Existing power-aware routing protocols basically consider the residual battery capacity and transmission power of nodes in route discovery process. This paper proposes a new power-aware routing protocol, TDPR(Traffic load & lifetime Deviation based Power-aware Routing protocol), that does not only consider residual battery capacity and transmission power, but also the traffic load of nodes and deviation among the lifetimes of nodes. It helps to extend the entire lifetime of network and to achieve load balancing. Simulations using ns-2[14] show the performance of the proposed routing protocol in terms of the load balancing of the entire network, the consumed energy capacity of nodes, and an path's reliability TDPR has maximum 72% dead nodes less than AODV[4], and maximum 58% dead nodes less than PSR[9]. And TDPR consumes residual energy capacity maximum 29% less than AODV, maximum 15% less than PSR. Error messages are sent maximum 38% less than PSR, and maximum 41% less than AODV.