• 제목/요약/키워드: Path length

검색결과 784건 처리시간 0.022초

절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향 (The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes)

  • 윤운상
    • 지질공학
    • /
    • 제34권2호
    • /
    • pp.317-327
    • /
    • 2024
  • 대규모 암반 사면에서 비연속성의 절리계가 발달할 때, 계단상 활동면에 의한 사면 파괴가 발생할 수 있다. 계단상 활동면은 절리-절리 활동면 또는 절리-암교 활동면으로 구분할 수 있으며, 절리-암교 활동면에서 암교는 절리와 평행한 전단 저항과 절리에 수직인 인장 저항을 제공한다. 계단 경로 파괴는 활동 암괴의 하중에 의해 암교의 파괴가 발생하여 암교 양단의 두 절리가 연결되며 발생한다. 암교의 길이가 동일하다면 암석의 인장강도가 전단강도에 비해 낮으므로 절리에 수직으로 형성된 암교가 파괴에 취약하며, 불연속면 간격/길이의 비가 작을수록 계단 경로 파괴의 가능성이 커진다. 비연속성의 절리가 발달하는 암반 사면의 계단상 활동 파괴 위험에 대한 평가를 위해서는 체계적인 불연속면 조사 및 분석을 통해 계단 경로 파괴면을 구성하여 한계 평형 해석 또는 수치 해석 등의 안정성 평가를 수행하여야 한다.

Walking behaviors for stroke survivors: comparison between straight line and curved path

  • Hwang, Wonjeong;Choi, Bora;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권3호
    • /
    • pp.141-145
    • /
    • 2019
  • Objective: The purpose of this study was to compare walking conditions (straight line and curved path) on walking patterns in persons who had experienced hemiplegic stroke and to determine whether if they adapt their walking pattern and performances according to changes in environmental conditions. Design: Cross-sectional study. Methods: Forty-four hemiplegic stroke survivors participated in this study. This study measured walking performance in three different walking conditions, such as straight walking, the more-affected leg in the inner curve walking, and less-affected leg in the inner curve walking conditions, and a 2-dimentional gait analysis system was used as a primary measurement. This study also measured secondary clinical factors including the Timed Up-and-Go Test, the Trunk Impairment Scale, and the Dynamic Gait Index. Results: After analyzing, cadence and step length of the less-affected side, stride length in the more-affected side, and stride length in less-affected side were significantly different among the three different walking conditions in this study (p<0.05), but other temporospatial parameters were not significant. Cadence was the largest in the straight walking condition. Step length in the less-affected side, stride length in the more-affected side, and stride length in less-affected side were also the longest in the straight walking condition. Conclusions: The results of the study suggest that hemiplegic stroke survivors show walking adaptability according to changes in walking demands and conditions, and moreover, cadence and step and stride lengths were significantly different between straight and curved walking conditions.

경계요소법(境界要素法)에 의한 균열 진전경로(進展經路)의 예측 (A Prediction of Crack Growth Path by Boundary Element Method)

  • 김상철;임원균
    • 대한조선학회지
    • /
    • 제25권4호
    • /
    • pp.39-46
    • /
    • 1988
  • The purpose of this paper is to apply the boundary element method to predict the crack growth path. The quarter point element with traction singularity at the crack tip is applied to compact tension type specimens and two inclined slit problems under compression load. The maximum stress criterion which was originally derived for the crack initiation is extended to the analysis of the crack propagation. The predicted crack paths with 1/4 crack growth increment of initial crack length agree quite well with experimental results. It is found that the computed crack path of the boundary element analysis is not mainly affected by the crack increment length.

  • PDF

인공 광원을 이용한 실내 조명 효과에 대한 기초 실험 연구 (Basic Experimental Study on Room Lighting Effects using Artificial Light Source)

  • 김정배
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.29-33
    • /
    • 2011
  • This study is performed to investigate the effect of the artificial light for room lightening. To do that, the experiments were done using the black room with 1m3 and performed to show the effect of the length between the room and light source and light intensities as LUX. The LUX of 18 sites in the room was measured using LUX meter. The length between the room and the light source was chosen as 500mm, 1000mm, and 1500mm and the light intensities was 3 levels. The results were shown the distinct difference between the part directly projected through the light path and non-directly projected. So, the light delivery path have to be modified for next step research. The results were very sensitive for the part directly projected through the light path. This study showed the basic results for room lightening using light source to simulate the solar lightening and was worth in a strict sense as fundamental study.

  • PDF

가변 동심원 도법을 이용한 축구로봇의 최단시간 경로설정에 관한 연구 (A study on the Minimum-Time Path Decision of a Soccer Robot using the Variable Concentric Circle Method)

  • 이동욱;이귀형
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.142-150
    • /
    • 2002
  • This study describes a method of finding an optimal path of a soccer robot by using a concentric circle method with different radii of rotation. Comparing with conventional algorithms which try to find the shortest path length, the variable concentric circle method find the shortest moving time. The radius fur the shortest moving time for a given ball location depends on the relative location between a shooting robot and a ball. Practically it is difficult to find an analytical solution due to many unknowns. Assuming a radius of rotation within a possible range, total path moving time can be calculated by adding the times needed for straight path and circular path. Among these times the shortest time is obtained. In this paper, a graphical solution is presented such that the game ground is divided into 3 regions with a minimum, medium, and maximum radius of rotation.

최단경로문제에서 k개의 치명호를 결정하는 유전알고리듬 (An Evolutionary Algorithm for Determining the k Most Vital Arcs in Shortest Path Problem)

  • 정호연
    • 한국국방경영분석학회지
    • /
    • 제26권2호
    • /
    • pp.120-130
    • /
    • 2000
  • The purpose of this study is to present a method for determining the k most vital arcs in shortest path problem using an evolutionary algorithm. The problem of finding the k most vital arcs in shortest path problem is to find a set of k arcs whose simultaneous removal from the network causes the greatest increase in the total length of shortest path. Generally, the problem determining the k most vital arcs in shortest path problem has known as NP-hard. Therefore, in order to deal with the problem of real world the heuristic algorithm is needed. In this study we propose to the method of finding the k most vital arcs in shortest path problem using an evolutionary algorithm which known as the most efficient algorithm among heuristics. The method presented in this study is developed using the library of the evolutionary algorithm framework and then the performance of algorithm is analyzed through the computer experiment.

  • PDF

The Relationship between Functional Movement Screen and Ankle Dysfunctions with Chronic Ankle Instability

  • Choi, Ho-Suk;Shin, Won-Seob;Shim, Jae-Kwang;Choi, Sung-Jin;Bang, Dae-Hyouk
    • The Journal of Korean Physical Therapy
    • /
    • 제26권6호
    • /
    • pp.459-463
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the correlations between functional movement screen (FMS) and ankle dysfunctions in subjects with chronic ankle instability (CAI). Methods: This study was a cross-sectional study of 20 participants with CAI. The ankle dorsiflexion range of motion (ROM), Foot and Ankle Disability Index (FADI), center of pressure (COP) path length, and COP velocity for ankle dysfunction were measured in all the subjects. All the subjects underwent the FMS concerned with ankle functions consisted of deep squats, hurdle steps and in-line lunges. The Spearman rank-order correlation coefficient was used to determine relationship between the ankle ROM, FADI, COP and FMS. Results: The results of the deep squat and in-line lunge exercises revealed a significant correlation with the ankle dorsiflexion ROM, FADI, COP path length, and COP velocity. The hurdle step showed no correlation with the ankle dorsiflexion ROM and FADI but a significant relationship with the COP path length and COP velocity. Conclusion: The results of this study showed that relationship deep squat and in-line lunge and it is suggested that an assessment tool using ankle dorsiflexion ROM and ankle instability would be clinically effective.

Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping

  • Namgung, Ihn
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.92-105
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on algebraic curve is developed and the concept of collision-free Path Space (PS) is introduced. This paper presents a Geometry Mapping (GM) based on two straight curves in which the intermediate connection point is organized in elliptic locus ($\delta$, $\theta$). The GM produces two-dimensional PS that is used to create the shortest collision-free path. The elliptic locus of intermediate connection point has a special property in that the total distance between the focus points through a point on ellipse is the same regardless of the location of the intermediate connection point on the ellipse. Since the radial distance, a, represents the total length of the path, the collision-free path can be found as the GM proceeds from $\delta$=0 (the direct path) to $\delta$=$\delta$$\_$max/(the longest path) resulting in the minimum time search. The GM of elliptic workspace (EWS) requires calculation of interference in circumferential direction only. The procedure for GM includes categorization of obstacles to .educe necessary calculation. A GM based on rectangular workspace (RWS) using Cartesian coordinate is also considered to show yet another possible GM. The transformations of PS among Circular Workspace Geometry Mapping (CWS GM) , Elliptic Workspace Geometry Mapping (EWS GM) , and Rectangular Workspace Geometry Mapping (RWS GM), are also considered. The simulations for the EWS GM on various computer systems are carried out to measure performance of algorithm and the results are presented.

신경회로망 방식에 의한 복잡한 포켓형상의 황삭경로 생성 (Neural network based tool path planning for complex pocket machining)

  • 신양수;서석환
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.32-45
    • /
    • 1995
  • In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.

  • PDF

센서 스캐닝에 의한 자율주행로봇의 경로주행 알고리즘 (A Path Navigation Algorithm for an Autonomous Robot Vehicle by Sensor Scanning)

  • 박동진;안정우;한창수
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, a path navigation algorithm through use of a sensor platform is proposed. The sensor platform is composed of two electric motors which make panning and tilting motions. An algorithm for computing a real path and an obstacle length is developed by using a scanning method that controls rotation of the sensors on the platform. An Autonomous Robot Vehicle(ARV) can perceive the given path by adapting this algorithm. A sensor scanning method is applied to the sensor platform for using small numbers of sensor. The path navigation algorithm is composed of two parts. One is to perceive a path pattern, the other is used to avoid an obstacle. An optimal controller is designed for tracking the reference path which is generated by perceiving the path pattern. The ARV is operated using the optimal controller and the path navigation algorithm. Based on the results of actual experiments, this algorithm for an ARV proved sufficient for path navigation by small number of sensors and for a low cost controller by using the sensor platform with a scanning method.