• 제목/요약/키워드: Path Planning and Control

검색결과 347건 처리시간 0.026초

방향성 매니퓰러빌리티를 이용한 주행 매니퓰레이터의 운동 계획 (Motion Planning for a Mobile Manipulator using Directional Manipulability)

  • 신동헌
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.95-102
    • /
    • 2005
  • The coordination of locomotion and manipulation has been the typical and main issue for a mobile manipulator. This is particularly because the solution for the control parameters is redundant and the accuracies of controlling the each joints are different. This paper presents a motion planning method for which the mobile base locomotion is less precise than the manipulator control. In such a case, it is appropriate to move the mobile base to discrete poses and then to move the manipulator to track a prescribed path of the end effector, while the base is stationary. It uses a variant of the conventional manipulability measure that is developed for the trajectory control of the end effector of the mobile manipulator along an arbitrary path in the three dimensional space. The proposed method was implemented on the simulation and the experiments of a mobile manipulator and showed its effectiveness.

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템 (Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning)

  • 구태훈;지성철
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

격자화된 공간상에서 4중-나무 구조를 이용한 가시성 검사를 바탕으로 한 새로운 경로 계획 알고리즘과 그 개선 방안들 (New Path Planning Algorithm based on the Visibility Checking using a Quad-tree on a Quantized Space, and its improvements)

  • 김정태;김대진
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.48-52
    • /
    • 2010
  • In this paper, we introduce a new path planning algorithm which combines the merits of a visibility graph algorithm and an adaptive cell decomposition. We quantize a given map with empty cells, blocked cells, and mixed cells, then find the optimal path on the quantized map using a visibility graph algorithm. For reducing the number of the quantized cells we use the quad-tree technique which is used in an adaptive cell decomposition, and for improving the performance of the visibility checking in making a visibility graph we propose a new visibility checking method which uses the property of the quad-tree instead of the well-known rotational sweep-line algorithm. For the more efficient visibility checking, we propose two additional improvements for our suggested method. Both of them are used for reducing the visited cells in the quad-tree. The experiments for a performance comparison of our algorithm with other well-known algorithms show that our proposed method is superior to others.

M-Space를 이용한 자동 주차를 위한 주차 경로 생성 (Motion Planning of the Car-like Vehicle in the Parking Space by the Motion Space)

  • 김달형;정우진
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Automatic parking assist system is one of the key technologies of the future automobiles. Control problem of a car-like vehicle is not easy due to the nonholonomic constraints. In this paper, a practical solution for planning a car-parking path is proposed according to the proposed motion space (M-space) approach. The M-space is the extension of the conventional configuration space (C-space). A collision-free, nonholonomic feasible path can be directly computed by the M-space conversion and a back-propagation of reachable regions from the goal. The proposed planning scheme provide not a single solution, but also a candidate solution set, therefore, optimization of the parking path can be easily carried out with respect to performance criteria such as safety, maneuvering, and so on. Presented simulation results clearly show that the proposed scheme provides various practical solutions.

  • PDF

초음파 위치인식 시스템을 이용한 차량의 무인주행 (Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System)

  • 김수용;이정민;이동활;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

휠구동방식의 이동로봇을 위한 제어시스템 설계 (A control system for wheel-driven mobile robot)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.19-24
    • /
    • 1992
  • Real-time mobile robot controllers usually have been designed with an emphasis on control theory ignoring the importance of system integration. This paper demonstrates that useful mobile robots require a real time controller with a wide range of capabilities in addition to control theory. These capabilities include: path-planning, position estimation, path tracking control and wheel control. An architectural framework supporting these capabilities has been designed and implemented. Using this frame work, individual modules such as a path planner, a path tracking controller, position estimators, wheel controllers and other cruical elements have been successfully integrated into the control system for the LCAR robot which was developed as a proto-type mobile robot in our laboratory. The context of the research, the architecture, its implementation and performance results from experiments are discussed.

  • PDF

가변 구조 제어 방식을 이용한 로보트 매니플레이터의 경로 이탈 특성 (Chracteristics of the path deviation of the robot manipulator using the variable structure control method)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.63-66
    • /
    • 1988
  • In the control of the robotic manipulators, the variable structure control method for the get Point Regualation has a advantage of the insensitivity about parameter variations and disturbances. When the robotic manipulators are controlled by a point-to-point scheme, no path constraint is considered. Thus, the variable structure control method will be effectively applied only if the trajectory of the robot hand is estimated precisely. In this paper, the joint trajectories in the joint space and the hand trajectory in the cartesian space are calculated by the variable structure control method, and an algorithm is suggested to elaborate the deviation error of the robot hand from a straight line path. The result of this study will become a base of the effective path planning about robotic manipulators with the variable structure control concept.

  • PDF

Sequential Quadratic Programming based Global Path Re-Planner for a Mobile Manipulator

  • Lee Soo-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.318-324
    • /
    • 2006
  • The mobile manipulator is expected to work in partially defined or unstructured environments. In our global/local approach to path planning, joint trajectories are generated for a desired Cartesian space path, designed by the global path planner. For a local path planner, inverse kinematics for a redundant system is used. Joint displacement limit for the manipulator links is considered in the motion planner. In an event of failure to obtain feasible trajectories, the task cannot be accomplished. At the point of failure, a deviation in the Cartesian space path is obtained and a replanner gives a new path that would achieve the goal position. To calculate the deviation, a nonlinear optimization problem is formulated and solved by standard Sequential Quadratic Programming (SQP) method.