• Title/Summary/Keyword: Path Planning Algorithm

Search Result 520, Processing Time 0.038 seconds

Developments of a Path Planning Algorithm for Unmanned Vehicle (무인차량을 위한 경로계획 알고리즘 개발)

  • Cho, Kyoung-Hwan;Ahn, Dong-Jun;Kim, Gun-Sik;Kim, Yong-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.53-57
    • /
    • 2011
  • Military and commercial unmanned vehicle navigation systems are being actively studied in the field of robotics. In this study, GPS-based path generation algorithm Film Festival and the system can compensate for the shortcomings of applying a map-based path plan, the unmanned vehicle navigation systems to improve the performance of path planning algorithms are introduced.

A Study on Path Planning of an Autonomous mobile Vehicle for Transport Sysing Using Genetic Algorithms (유전알고리즘을 이용한 운송설비용 자율 주행 운반체의 경로계획에 관한 연구)

  • ;趙玄哲
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.164-164
    • /
    • 1999
  • An autonomous mobile vehicle for transport system must plan optimal path in work environment without human supervision and obstacle collision. This is to reach a destination without getting lost. In this paper, a genetic algorithm for global and local path planning and collision avoidance is proposed. The genetic algorithm searches for a path in the entire and continuous free space and unifies global path planning and local path planning. The simulation shows the proposed method is an efficient and effective method when compared with the traditional collision avoidance algorithms.

LOS-based Local Path Planning for Self organization of Unicycle Swarm Robots (유니사이클 스웜 로봇의 자기조직화를 위한 LOS 기반의 국소 경로 계획)

  • Jung, Hah-Min;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1881_1882
    • /
    • 2009
  • Simple quadratic potential functions for unicycle robot path planning are presented, where proposed algorithm for path planning has the different environment for each robot based on LOS(Line Of Sight) between a target and an obstacle, unlike a conventional path planning. In doing so, the proposed algorithm assumes that each swarm robot equips its own vision instead of a ceiling camera. In particular, this paper presents that each robot follows its different local leader. As a result proposed algorithm reduces local minimum problems by the help of each local leader.

  • PDF

3D A*-based Berthing Path Planning Algorithm Considering Path Following Suitability (경로 추종 적합성 고려 3D A* 기반 접안 경로 계획 알고리즘 개발)

  • Yeong-Ha Shin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.351-356
    • /
    • 2022
  • Among the path planning methods used to generate the ship's path, the graph search-based method is widely used because it has the advantage of its completeness, optimality. In order to apply the graph-based search method to the berthing path plan, the deviation from the path must be minimized. Path following suitability should be considered essential, since path deviation during berthing can lead to collisions with berthing facilities. However, existing studies of graph search-based berthing path planning are dangerous for application to real-world navigation environments because they produce results with a course change just before berthing. Therefore, in this paper, we develop a cost function suitable for path following, and propose a 3D A* algorithm that applies it. In addition, in order to evaluate the suitability for the actual operating environment, the results of the path generation of the algorithm are compared with the trajectory of the data collected by manned operations.

  • PDF

A Fusion Algorithm of Pure Pursuit and Velocity Planning to Improve the Path Following Performance of Differential Driven Robots in Unstructured Environments (차동 구동형 로봇의 비정형 환경 주행 경로 추종 성능 향상을 위한 Pure pursuit와 속도 계획의 융합 알고리즘)

  • Bongsang Kim;Kyuho Lee;Seungbeom Baek;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • In the path traveling of differential-drive robots, the steering controller plays an important role in determining the path-following performance. When a robot with a pure-pursuit algorithm is used to continuously drive a right-angled driving path in an unstructured environment without turning in place, the robot cannot accurately follow the right-angled path and stops driving due to the ground and motor load caused by turning. In the case of pure-pursuit, only the current robot position and the steering angle to the current target path point are generated, and the steering component does not reflect the speed plan, which requires improvement for precise path following. In this study, we propose a driving algorithm for differentially driven robots that enables precise path following by planning the driving speed using the radius of curvature and fusing the planned speed with the steering angle of the existing pure-pursuit controller, similar to the Model Predict Control control that reflects speed planning. When speed planning is applied, the robot slows down before entering a right-angle path and returns to the input speed when leaving the right-angle path. The pure-pursuit controller then fuses the steering angle calculated at each path point with the accelerated and decelerated velocity to achieve more precise following of the orthogonal path.

Path planning of the J-lead inspection using hopfield model (홉필드 모델을 이용한 J-리드 검사 경로 생성)

  • 이중호;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1774-1777
    • /
    • 1997
  • As factory automation is required, using the vision system is also essential. Especially, the pateh planning of parts with J-lead on PCB plays a import role of whole automation. Path planning is required because J-lead is scatteed compaed to L-lead on PCB. Therefore, in this paper, we propose path planning of part inspection with J-lead to use Hopfield Model(TSP : Traveling Salesman Problem). Then optical system suited to J-lead inspection is designed and the algorithm of J-lead solder joint and part inspection is proposed.

  • PDF

Path planning of Autonomous Mobile robot based on a Genetic Algorithm (유전 알고리즘을 이용한 자율 이동로봇의 최적경로 계획)

  • 이동하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.147-152
    • /
    • 2000
  • In this paper we propose a Genetic Algorithm for the path planning of an autonomous mobile robot. Genetic Algorithms(GAs) have advantages of the adaptivity such as GAs work even if an environment is time-varying or unknown. Therefore, we propose the path planning algorithms using the GAs-based approach and show more adaptive and optimal performance by simulation.

  • PDF

Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots (포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발)

  • 이병룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF

Path Planning for the Shortest Driving Time Considering UGV Driving Characteristic and Driving Time and Its Driving Algorithm (무인 주행 차량의 주행 특성과 주행 시간을 고려한 경로 생성 및 주행 알고리즘)

  • Noh, Chi-Beom;Kim, Min-Ho;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • $A^*$ algorithm is a global path generation algorithm, and typically create a path using only the distance information. Therefore along the path, a moving vehicle is usually not be considered by driving characteristics. Deceleration at the corner is one of the driving characteristics of the vehicle. In this paper, considering this characteristic, a new evaluation function based path algorithm is proposed to decrease the number of driving path corner, in order to reduce the driving cost, such as driving time, fuel consumption and so on. Also the potential field method is applied for driving of UGV, which is robust against static and dynamic obstacle environment during following the generated path of the mobile robot under. The driving time and path following test was occurred by experiments based on a pseudo UGV, mobile robot in downscaled UGV's maximum and driving speed in corner. The experiment results were confirmed that the driving time by the proposed algorithm was decreased comparing with the results from $A^*$ algorithm.

Multi-Robot Path Planning for Environmental Exploration/Monitoring (미지 환경 탐색 및 감시를 위한 다개체 로봇의 경로계획)

  • Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.413-418
    • /
    • 2012
  • This paper presents a multi-robot path planner for environment exploration and monitoring. Robotics systems are being widely used as data measurement tools, especially in dangerous environment. For large scale environment monitoring, multiple robots are required in order to save time. The path planner should not only consider the collision avoidance but efficient coordination of robots for optimal measurements. Nonlinear spring force based planning algorithm is integrated with the spatial gradient following path planner. Perturbation/Correlation based estimation of spatial gradient is applied. An algorithm of tuning the stiffness for robot coordination is presented. The performance of the proposed algorithm is discussed with simulation results.