• Title/Summary/Keyword: Patch clamp

Search Result 305, Processing Time 0.03 seconds

Effects of Adenosine on the Ionic Channel Activated by Metabolic Inhibition in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • The objective of the present study was to characterize the role of adenosine in regulation of ATP-sensitive $K^+\;channel\;(K_{ATP}\;channel)$ activity in isolated rabbit ventricular myocytes using the patch clamp technique. Internal adenosine had little effects on KaTr channel activity. In an outside-out patch with intrapipette GTP and ATP, external adenosine stimulated $K_{ATP}\;channel$ activity. In an inside-out Patch with intrapipette adenosine, ATP reduced $K_{ATP}\;channel$ activity, and GTP stimulated $K_{ATP}\;channel$ activity. Adenosine receptor activation shifted the half-maximal inhibition Of $K_{ATP}\;channel\;from\;70\;to\;241\;{\mu}m$. These results Suggest that activation of adenosine receptors stimulates $K_{ATP}\;channels$ in rabbit ventricular myocytes by reducing the apparent affinity of the channel for ATP. The effect may be important for activating $K_{ATP}\;channels$ during early phase of myocardial ischemia.

  • PDF

Effect of Propofol on Ion Channels in Acutely Dissociated Dorsal Raphe Neuron of Sprague-Dawley Rats

  • Lee, Bong-Jae;Kwon, Moo-ll;Shin, Min-Chul;Kim, Youn-Jung;Kim, Chang-Ju;Kim, Soon-Ae;Kim, Ee-Hwa;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.189-197
    • /
    • 2001
  • To investigate propofol's effects on ionic currents induced by ${\gamma}-aminobutyric$ acid (GABA) and glycine as well as on those produced by the nicotinic acetylcholine- and glutamate-responsive channels, rat dorsal raphe neurons were acutely dissociated and the nystatin-perforated patch-clamp technique under voltage-clamp conditions was used to observe their responses to the administration of propofol. Propofol evoked ion currents in a dose-dependent manner, and propofol $(10^{-4}\;M)$ was used to elicit ion currents through the activation of $GABA_A,$ glycine, nicotinic acetylcholine and glutamate receptors. Propofol at a clinically relevant concentration $(10^{-5}\;M)$ potentiated $GABA_A-,$ glycine- and NMDA receptor-mediated currents. The potentiating action of propofol on $GABA_A-,$ glycine- and NMDA receptor-mediated responses involved neither opioid receptors nor G-proteins. Apparently, propofol modulates inhibitory and excitatory neurotransmitter-activated ion channels either by acting directly on the receptors or by potentiating the effects of the neurotransmitters, and this modulation appears to be responsible for the majority of the anaesthetic and/or adverse effects.

  • PDF

Modulation of the aqueous extract of Bupleuri radix on glycine-induced current in the acutely dissociated rat periaqueductal gray neurons

  • Sung, Yun-Hee;Shin, Mal-Soon;Kim, Tae-Soo;Lee, Sang-Won;Kim, Youn-Jung;Shin, Hye-Sook;Kim, Hong;Kim, Chang-Ju
    • Advances in Traditional Medicine
    • /
    • v.7 no.5
    • /
    • pp.549-555
    • /
    • 2008
  • Bupleuri radix (Umbelliferae), the dried root of Bupleurum Chinense DC, has been clinically used to mitigate pain sensation. The descending pain control system consists of three major components, and modulation of pain in the periaqueductal gray is the most extensively studied descending pain control system. However, the relation of Bupleuri radix on the descending pain control system has not been clarified. In the present study, modulation of the aqueous extract of Bupleuri radix on glycine-induced ion current in the acutely dissociated periaqueductal gray neurons was investigated by using nystatin-perforated patch-clamp technique under voltage-clamp condition. In the present results, the glycine-induced ion current was significantly suppressed by 0.1 mg/ml Bupleuri radix, while treatment with $10^{-5}\;M$ naltrexone, opioid receptor antagonist, alleviated Bupleuri radix-induced inhibition on glycine-induced ion current. The present study showed that the aqueous extract of Bupleuri radix may activate descending pain control system through inhibition on glycine-induced ion current in the periaqueductal gray neurons and this effect is mediated by opioid receptors.

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.209-216
    • /
    • 2018
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.

Thiol-dependent Redox Mechanisms in the Modification of ATP-Sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Cuong, Dang-Van;Kim, Chung-Hui;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • Cellular redox state is known to be perturbed during ischemia and that $Ca^{2+}$ and $K^2$ channels have been shown to have functional thiol groups. In this study, the properties of thiol redox modulation of the ATP-sensitive $K^2$ ($K_{ATP}$) channel were examined in rabbit ventricular myocytes. Rabbit ventricular myocytes were isolated using a Langendorff column for coronary perfusion and collagenase. Single-channel currents were measured in excised membrane patch configuration of patch-clamp technique. The thiol oxidizing agent 5,5'-dithio-bis-(2-nitro-benzoic acid) (DTNB) inhibited the channel activity, and the inhibitory effect of DTNB was reversed by dithiothreitol (disulfide reducing agent; DTT). DTT itself did not have any effect on the channel activity. However, in the patches excised from the metabolically compromised cells, DTT increased the channel activity. DTT had no effect on the inhibitory action by ATP, showing that thiol oxidation was not involved in the blocking mechanism of ATP. There were no statistical difference in the single channel conductance for the oxidized and reduced states of the channel. Analysis of the open and closed time distributions showed that DTNB had no effect on open and closed time distributions shorter than 4 ms. On the other hand, DTNB decreased the life time of bursts and increased the interburst interval. N-ethylmaleimide (NEM), a substance that reacts with thiol groups of cystein residues in proteins, induced irreversible closure of the channel. The thiol oxidizing agents (DTNB, NEM) inhibited of the $K_{ATP}$ channel only, when added to the cytoplasmic side. The results suggested that metabolism-induced changes in the thiol redox can also modulate $K_{ATP}$ channel activity and that a modulatory site of thiol redox may be located on the cytoplasmic side of the $K_{ATP}$ channel in rabbit ventricular myocytes.

4-Aminopyridine Inhibits the Large-conductance $Ca^{2+}-activated$ $K^+$ Channel $(BK_{Ca})$ Currents in Rabbit Pulmonary Arterial Smooth Muscle Cells

  • Bae, Young-Min;Kim, Ae-Ran;Kim, Bo-Kyung;Cho, Sung-Il;Kim, Jung-Hwan;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2003
  • Ion channel inhibitors are widely used for pharmacological discrimination between the different channel types as well as for determination of their functional role. In the present study, we tested the hypothesis that 4-aminopyridine (4-AP) could affect the large conductance $Ca^{2+}$-activated $K^+$ channel ($BK_{Ca}$) currents using perforated-patch or cell-attached configuration of patch-clamp technique in the rabbit pulmonary arterial smooth muscle. Application of 4-AP reversibly inhibited the spontaneous transient outward currents (STOCs). The reversal potential and the sensitivity to charybdotoxin indicated that the STOCs were due to the activation of $BK_{Ca}$. The $BK_{Ca}$ currents were recorded in single channel resolution under the cell-attached mode of patch-clamp technique for minimal perturbation of intracellular environment. Application of 4-AP also inhibited the single $BK_{Ca}$ currents reversibly and dose-dependently. The membrane potential of rabbit pulmonary arterial smooth muscle cells showed spontaneous transient hyperpolarizations (STHPs), presumably due to the STOC activities, which was also inhibited by 4-AP. These results suggest that 4-AP can inhibit $BK_{Ca}$ currentsin the intact rabbit vascular smooth muscle. The use of 4-AP as a selective voltage-dependent $K^+$ (KV) channel blocker in vascular smooth muscle, therefore, must be reevaluated.

Bile Acid Modulation of Gastroinstinal Smooth Muscle Contraction and Ionic Currents

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • We have examined whether bile acids can affect the electrical and mechanical activities of circular smooth muscle of canine colon and ileum, using isometric tension measurement or patch clamp technique. It was found that a dilution of canine bile $(0.03{\sim}2%\;by\;volume)$ enhanced or inhibited the amplitude of spontaneous contractions. An individual component of bile, deoxycholic acid (DCA) enhanced the frequency and amplitude of the spontaneous contractile activity at $10^{-6}\;M,$ while DCA at $10^{-4}\;M$ inhibited the contraction. Similarly, the response to cholic acid was excitatory at $10^{-5}\;M$ and inhibitory at $3{\times}10^{-4}\;M.$ Taurocholic acid at $10^{-4}\;M$ enhanced the amplitude of muscle contraction. Electrically, canine bile at 1% reversibly depolarized the colonic myocytes under current clamp mode. Bile acids also elicited non-selective cation currents under voltage clamp studies, where $K^+$ currents were blocked and the $Cl^-$ gradient was adjusted so that $E_{Cl}^-$ was equal to -70 mV, a holding potential. The non-selective cation current might explain the depolarization caused by bile acids in intact muscles. Furthermore, the bile acid regulation of electrical and mechanical activities of intestinal smooth muscle may explain some of the pathophysiological conditions accompanying defects in bile reabsorption.

  • PDF

Effects of Hydrogen Peroxide on Neuronal Excitability and Synaptic Transmission in Rat Substantia Gelatinosa Neurons

  • Son, Yong;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.153-160
    • /
    • 2007
  • The superficial dorsal horn, particularly substantia gelatinosa (SG) in the spinal cord, receives inputs from small-diameter primary afferents that predominantly convey noxious sensation. Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. In the present study, whole cell patch clamp recordings were carried out on SG neurons in spinal cord slice of young rats to investigate the effects of hydrogen peroxide on neuronal excitability and excitatory synaptic transmission. In current clamp condition, tert-buthyl hydroperoxide (t-BuOOH), an ROS donor, depolarized membrane potential of SG neurons and increased the neuronal firing frequencies evoked by depolarizing current pulses. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) or ascorbate, ROS scavengers, t-BuOOH did not induce hyperexcitability. In voltage clamp condition, t-BuOOH increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), and monosynaptically evoked excitatory postsynaptic currents (eEPSCs) by electrical stimulation of the ipsilateral dorsal root. These data suggest that ROS generated by peripheral nerve injury can modulate the excitability of the SG neurons via pre- and postsynaptic actions.

Effects of Nitric Oxide on the Neuronal Activity of Rat Cerebellar Purkinje Neurons

  • Jang, Su-Joong;Jeong, Han-Soong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.259-264
    • /
    • 2010
  • This study was designed to investigate the effects of nitric oxide on the neuronal activity of rat cerebellar Purkinje cells. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated Purkinje cells were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium current were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 15 Purkinje cells revealed excitatory responses to $20\;{\mu}M$ of sodium nitroprusside (SNP) and 4 neurons (20%) did not respond to SNP. Whole potassium currents of Purkinje cells were decreased by SNP (n=10). Whole potassium currents of Purkinje cells were also decreased by L-arginine, substrate of nitric oxide (n=10). These experimental results suggest that nitric oxide increases the neuronal activity of Purkinje cells by altering the resting membrane potential and after hyperpolarization.

Protein Kinase Modulates the $GABA_c$ Currents in Cone-horizontal Cell Axon-terminals Isolated from Catfish Retina

  • Paik, Sun-Sook;Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.54-54
    • /
    • 1999
  • Protein kinase modulation of gamma-aminobutyric acid C (GABA$_{c}$) currents in freshly dissociated catfish retinal cone-horizontal cell axon-terminals was studied under voltage clamp with the use of the whole cell patch-clamp technique. Responses to pulses of GABA were monitored in intracellular application of adenosin 3',5'-cycle monophophate (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC) activators, and their inhibitors or inactive analogues.(omitted)d)

  • PDF