• Title/Summary/Keyword: Pasternak model

Search Result 149, Processing Time 0.021 seconds

Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations (부분 탄성지지된 유체 저장 원통셸의 자유진동)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

Free Vibrations of Cylindrical Shells on Inclined Partial Elastic Foundation (경사진 부분 탄성 지지부를 갖는 원통셸의 자유진동)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2014
  • The free vibration characteristics of cylindrical shells on inclined partial elastic foundations are investigated by an analytical method. The cylindrical shell is partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The area of elastic foundation is not uniform and varies along the axial direction of the shell. The motion of shell is represented by first-order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The governing equation is obtained using the Rayleigh-Ritz method and a variation approach. To validate the present method, the numerical example is presented and compared with the present FEA results. The numerical results reveal that the elastic foundation has significant effect on vibration characteristics.

Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation

  • Shaterzadeh, Alireza;Foroutan, Kamran
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.615-631
    • /
    • 2016
  • In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is occurred, when both of the stiffeners have angle of thirty degrees.

Free Vibrations of Curved Beams Partially Supported on Elastic Foundation (탄성지반으로 부분 지지된 곡선보의 자유진동)

  • 이병구;최규문;이태은;김무영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.106-115
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams partially supported on elastic foundations. Taking account of the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the Pasternak foundation model is considered as the elastic foundation. Differential equations are numerically solved to calculate natural frequencies and mode shapes. The experiments were performed in which the free vibration frequencies of such curved beams in laboratorial scale were measured and these results agreed quite well with the present studies. In numerical examples, the circular, parabolic, sinusoidal and elliptic curved members are considered. The parametric studies are performed and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.

Size-dependent vibration analysis of laminated composite plates

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.337-349
    • /
    • 2019
  • The size-dependent vibration analysis of a cross-/angle-ply laminated composite plate when embedded on the Pasternak elastic foundation and exposed to an in-plane magnetic field are investigated by adopting an analytical eigenvalue approach. The formulation, which is based on refined-hyperbolic-shear-deformation-plate theory in conjunction with the Eringen Nonlocal Differential Model (ENDM), is tested against considering problems for which numerical/analytical solutions available in the literature. The findings of this study demonstrated the role of magnetic field, size effect, elastic foundation coefficients, geometry, moduli ratio, lay-up numbers and fiber orientations on the nonlocal frequency of cross-/angle-ply laminated composite plates.

Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions

  • Aicha, Kablia;Rabia, Benferhat;Daouadji, Tahar Hassaine;Bouzidene, Ahmed
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.575-597
    • /
    • 2020
  • Equilibrium equations of a porous FG plate resting on Winkler-Pasternak foundations with various boundary conditions are derived using a new refined shear deformation theory. Different types of porosity distribution rate are considered. Governing equations are obtained including the plate-foundation interaction. This new model meets the nullity of the transverse shear stress at the upper and lower surfaces of the plate. The novel rule of mixture is proposed to describe and approximate material properties of the FG plates with different distribution case of porosity. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature. Effects of variation of porosity distribution rate, boundary conditions, foundation parameter, power law index, plate aspect ratio, side-to-thickness ratio on the deflections and stresses are all discussed.

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.701-711
    • /
    • 2022
  • The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.