Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.5.337

Size-dependent vibration analysis of laminated composite plates  

Shahsavari, Davood (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Janghorban, Maziar (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Publication Information
Advances in nano research / v.7, no.5, 2019 , pp. 337-349 More about this Journal
Abstract
The size-dependent vibration analysis of a cross-/angle-ply laminated composite plate when embedded on the Pasternak elastic foundation and exposed to an in-plane magnetic field are investigated by adopting an analytical eigenvalue approach. The formulation, which is based on refined-hyperbolic-shear-deformation-plate theory in conjunction with the Eringen Nonlocal Differential Model (ENDM), is tested against considering problems for which numerical/analytical solutions available in the literature. The findings of this study demonstrated the role of magnetic field, size effect, elastic foundation coefficients, geometry, moduli ratio, lay-up numbers and fiber orientations on the nonlocal frequency of cross-/angle-ply laminated composite plates.
Keywords
free vibration; Laminated composite plates; Pasternak foundation; Eringen nonlocal theory;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Chen, J., Guo, J. and Pan, E. (2017), "Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect", J. Sound Vib., 400, 550-563. https://doi.org/10.1016/j.jsv.2017.04.001   DOI
2 Ebrahimi, F. and Haghi, P. (2018), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., Int. J., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201   DOI
3 Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermo-mechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. https://doi.org/10.1080/15376494.2017.1285458   DOI
4 Eltaher, M., Khater, M., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
5 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J.Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
6 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
7 Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0   DOI
8 Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263.https://doi.org/10.1016/j.ijengsci.2018.09.006   DOI
9 Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002   DOI
10 Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B, 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008   DOI
11 Salari, E., Ashoori, A. and Vanini, S.A.S. (2019), "Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate", Adv. Nano Res., Int. J., 7(1), 25-38. https://doi.org/10.12989/anr.2019.7.1.025
12 Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007   DOI
13 Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89   DOI
14 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018h), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
15 Karami, B., Shahsavari, D. and Janghorban, M. (2018e), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143   DOI
16 Karami, B., Shahsavari, D. and Li, L. (2018f), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-Dimens. Syst.Nanostruct., 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020   DOI
17 Karami, B., Shahsavari, D. and Li, L. (2018g), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Thermal Stress., 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781   DOI
18 Karami, B., Janghorban, M. and Rabczuk, T. (2019a), "Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model", Eur. J. Mech.-A/Solids, 78, 103822. https://doi.org/10.1016/j.euromechsol.2019.103822   DOI
19 Karami, B., Janghorban, M. and Rabczuk, T. (2019b), "Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory", Compos. Struct., 227, 111249. https://doi.org/10.1016/j.compstruct.2019.111249   DOI
20 Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R. and Tornabene, F. (2019c), "Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes", Molecules, 24(15), 2750. https://doi.org/10.3390/molecules24152750   DOI
21 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018d), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004   DOI
22 Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7   DOI
23 Shahsavari, D., Karami, B. and Li, L. (2018b), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
24 Shahsavari, D., Karami, B. and Mansouri, S. (2018c), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech-A/Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004   DOI
25 Farokhi, H., Ghayesh, M.H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", Int. J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007   DOI
26 Farokhi, H. and Ghayesh, M.H. (2018a), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017   DOI
27 Farokhi, H. and Ghayesh, M.H. (2018b), "On the dynamics of imperfect shear deformable microplates", Int. J. Eng. Sci., 133, 264-283. https://doi.org/10.1016/j.ijengsci.2018.04.011   DOI
28 Farokhi, H. and Ghayesh, M.H. (2018c), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci. Numer. Simul., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033   DOI
29 Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004   DOI
30 Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Nonlocal elasticity theory for radial vibration of nanoscale spherical shells", Eur. J. Mech.-A/Solids, 41, 37-42. https://doi.org/10.1016/j.euromechsol.2013.02.003   DOI
31 Ghayesh, M.H. (2018b), "Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037   DOI
32 Ghayesh, M.H. (2018c), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017   DOI
33 Ghayesh, M.H. and Farokhi, H. (2015), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004   DOI
34 Shahsavari, D., Karami, B. and janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., Int. J., 32(2), 173-187. https://doi.org/10.12989/scs.2019.32.2.173
35 She, G.-L., Yuan, F.-G., Karami, B., Ren, Y.-R. and Xiao, W.-S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005   DOI
36 Shen, H.-S., Zheng, J.-J. and Huang, X.-L. (2003), "Dynamic response of shear deformable laminated plates under thermomechanical loading and resting on elastic foundations", Compos. Struct., 60(1), 57-66. https://doi.org/10.1016/S0263-8223(02)00295-7   DOI
37 Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146.https://doi.org/10.2514/2.1622   DOI
38 Karami, B., Shahsavari, D. and Janghorban, M. (2019f), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014   DOI
39 Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
40 Karami, B., Janghorban, M. and Tounsi, A. (2019e), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
41 Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019g), "Wave Propagation of Porous Nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022   DOI
42 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019h), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a0959. https://doi.org/10.1088/2053-1591/ab3474
43 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019i), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089   DOI
44 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019j), "Wave dispersion of nanobeams incorporating stretching effect", Waves Random Complex Media. https://doi.org/10.1080/17455030.17452019.11607623
45 Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019k), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036   DOI
46 Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
47 Tang, H., Li, L. and Hu, Y. (2019a), "Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams", Appl. Math. Model., 66, 527-547. https://doi.org/10.1016/j.apm.2018.09.027   DOI
48 Tang, H., Li, L., Hu, Y., Meng, W. and Duan, K. (2019b), "Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects", Thin-Wall. Struct., 137, 377-391. https://doi.org/10.1016/j.tws.2019.01.027   DOI
49 Thai, H.-T. and Kim, S.-E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010   DOI
50 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003   DOI
51 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006   DOI
52 Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017a), "Oscillations of functionally graded microbeams", Int. J. Eng. Sci., 110, 35-53. https://doi.org/10.1016/j.ijengsci.2016.09.011   DOI
53 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021   DOI
54 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B: Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074   DOI
55 Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003   DOI
56 Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017b), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001   DOI
57 Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014   DOI
58 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001   DOI
59 Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
60 Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019l), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(1), 287-301. https://doi.org/10.1177/0954406218756451   DOI
61 Karlicic, D., Cajic, M., Adhikari, S., Kozic, P. and Murmu, T. (2017), "Vibrating nonlocal multi-nanoplate system under inplane magnetic field", Eur. J. Mech.-A/Solids, 64, 29-45. https://doi.org/10.1016/j.euromechsol.2017.01.013   DOI
62 Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021   DOI
63 Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7   DOI
64 Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006   DOI
65 Moshtagh, E., Pan, E. and Eskandari-Ghadi, M. (2017), "Wave propagation in a multilayered magneto-electro-elastic half-space induced by external/internal circular time-harmonic mechanical loading", Int. J. Solids Struct., 128, 243-261. https://doi.org/10.1016/j.ijsolstr.2017.08.032   DOI
66 Murmu, T., McCarthy, M. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005   DOI
67 Karami, B. and Janghorban, M. (2019c), "A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams", Steel Compos. Struct., Int. J., 32(2), 213-223.https://doi.org/10.12989/scs.2019.32.2.213
68 Aghababaei, R. and Reddy, J. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044   DOI
69 Akavci, S. (2007), "Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plastics Compos., 26(18), 1907-1919. https://doi.org/10.1177/0731684407081766   DOI
70 Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., Int. J., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257
71 Barretta, R., Luciano, R., de Sciarra, F.M. and Ruta, G. (2018), "Stress-driven nonlocal integral model for Timoshenko elastic nano-beams", Eur. J. Mech.-A/Solids, 72, 275-286. https://doi.org/10.1016/j.euromechsol.2018.04.012   DOI
72 Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032   DOI
73 Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
74 Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., Int. J., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309   DOI
75 Zhang, Y., Liu, G. and Xie, X. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Physical Review B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404   DOI
76 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051   DOI
77 Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J.,23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215
78 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
79 Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025   DOI
80 Karami, B., Janghorban, M. and Li, L. (2018c), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011   DOI
81 Karami, B., Shahsavari, D. and Janghorban, M. (2018d), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001   DOI
82 Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039.   DOI
83 Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115   DOI
84 Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386   DOI
85 Narendar, S., Gupta, S. and Gopalakrishnan, S. (2012), "Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 36(9), 4529-4538. https://doi.org/10.1016/j.apm.2011.11.073   DOI
86 Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6   DOI
87 Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. https://doi.org/10.1115/1.1380385   DOI
88 Pan, E. and Heyliger, P. (2002), "Free vibrations of simply supported and multilayered magneto-electro-elastic plates", J. Sound Vib., 252(3), 429-442. https://doi.org/10.1006/jsvi.2001.3693   DOI
89 Phan, N. and Reddy, J. (1985), "Analysis of laminated composite plates using a higher-order shear deformation theory", Int. J.Numer. Methods Eng., 21(12), 2201-2219. https://doi.org/10.1002/nme.1620211207   DOI
90 Pradhan, S. and Phadikar, J. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1-2), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007   DOI
91 Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., Int. J., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013
92 Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7   DOI
93 Gibson, R.F. (2016), Principles of Composite Material Mechanics, CRC press.
94 Guo, J., Chen, J. and Pan, E. (2016), "Analytical three-dimensional solutions of anisotropic multilayered composite plates with modified couple-stress effect", Compos. Struct., 153, 321-331. https://doi.org/10.1016/j.compstruct.2016.05.089   DOI
95 Jalaei, M.H. and Arani, A.G. (2018), "Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation", Physica B: Condensed Matter, 530, 222-235. https://doi.org/10.1016/j.physb.2017.11.049   DOI
96 Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421. https://doi.org/10.1142/S0217984916504212   DOI
97 Karami, B. and Janghorban, M. (2019a), "Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution", Eur. J. Mech.-A/Solids, 76, 36-45. https://doi.org/10.1016/j.euromechsol.2019.03.008   DOI
98 Karami, B. and Janghorban, M. (2019b), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Wall. Struct., 143, 106227. https://doi.org/10.1016/j.tws.2019.106227   DOI
99 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719   DOI
100 Raghu, P., Preethi, K., Rajagopal, A. and Reddy, J.N. (2016), "Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects", Compos. Struct., 139, 13-29. https://doi.org/10.1016/j.compstruct.2015.11.068   DOI
101 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.