Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.6.701

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium  

Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
Publication Information
Structural Engineering and Mechanics / v.82, no.6, 2022 , pp. 701-711 More about this Journal
Abstract
The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.
Keywords
nanoplate; natural frequencies; nonlocal; thermal vibration; visco-Pasternak;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mechanica Sinica, 30, 516-525. https://doi.org/10.1007/s10409-014-0072-3.   DOI
2 Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.   DOI
3 Hosseini-Hashemi, S., Zare, M. and Nazemnezhad, R. (2013), "An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity", Compos. Struct., 100, 290-299. https://doi.org/10.1016/j.compstruct.2012.11.035.   DOI
4 Nematollahi, M.S., Mohammadi, H. and Nematollahi, M.A. (2017), "Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach", Superlt. Microstruct., 111, 944-959. https://doi.org/10.1016/j.spmi.2017.07.055.   DOI
5 Pouresmaeeli, S., Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium", Compos. Struct., 96, 405-410. https://doi.org/10.1016/j.compstruct.2012.08.051.   DOI
6 Li, Y., Cai, Z. and Shi, S. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033.   DOI
7 Jomehzadeh, E. and Saidi, A.R. (2011), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017.   DOI
8 Sari, M.S., Al-Rbai, M. and Qawasmeh, B.R. (2018), "Free vibration characteristics of functionally graded Mindlin nanoplates resting on variable elastic foundations using the nonlocal elasticity theory", Adv. Mech. Eng., 10(12), 1-17. https://doi.org/10.1177/1687814018813458.   DOI
9 Shakouri, A., Ng, T.Y. and Lin, R.M. (2011), "Nonlocal plate model for the free vibration analysis of nanoplates with different boundary conditions", J. Comput. Theor. Nanosci., 8, 2118-2128. https://doi.org/10.1166/jctn.2011.1934.   DOI
10 Karlicic, D., Cajic, M., Kozic, P. and Pavlovic, I. (2015), "Temperature effects on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium", Compos. Struct., 131, 672-681. https://doi.org/10.1016/j.compstruct.2015.05.058.   DOI
11 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.   DOI
12 Hosseini, M., Mofidi, M.R., Jamalpoor, A. and Safi Jahanshahi, M. (2018), "Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory", Microsys. Technol., 24, 2295-2316. https://doi.org/10.1007/s00542-017-3654-8.   DOI
13 Pouresmaeeli, S., Fazelzadeh, S. and Ghavanloo, E. (2012), "Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium", Compos. B, 43(8), 3384-3390. https://doi.org/10.1016/j.compositesb.2012.01.046.   DOI
14 Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.   DOI
15 Liu, C., Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2018), "Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory", Mech. Adv. Mater. Struct., 25(15-16), 1252-1264. https://doi.org/10.1080/15376494.2016.1149648.   DOI
16 Malekzadeh, P. and Shojaee, M. (2015), "A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates", J. Vib. Control, 21(14), 2755-2772. https://doi.org/10.1177/1077546313516667.   DOI
17 Malekzadeh, P., Setoodeh, A.R. and Alibeygi Beni, A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Compos. Struct., 93, 1631-1639. https://doi.org/10.1016/j.compstruct.2011.01.008.   DOI
18 Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi A., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel Compos. Struct., 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.   DOI
19 Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.   DOI
20 Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos Struct., 153, 428-441. https://doi.org/10.1016/j.compstruct.2016.06.045.   DOI
21 Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93, 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004.   DOI
22 Murmu, T. and Pradhan, S. (2009b), "Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity", J. Appl. Phys., 106, 104301. https://doi.org/10.1063/1.3233914.   DOI
23 Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.   DOI
24 Prasanna Kumar, T.J., Narendar, S. and Gopalakrishnan, S. (2013), "Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics", Compos. Struct., 100, 332-342. https://doi.org/10.1016/j.compstruct.2012.12.039.   DOI
25 Rajabi, K. and Hosseini-Hashemi, S. (2017), "Size-dependent free vibration analysis of first-order shear-deformable orthotropic nanoplates via the nonlocal strain gradient theory", Mater. Res. Exp., 4(7), 075054. https://doi.org/10.1088/2053-1591/aa7e69.   DOI
26 Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.   DOI
27 Murmu, T. and Pradhan, S. (2009a), "Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model". Phys. E, 41, 1628-1633. https://doi.org/10.1016/j.physe.2009.05.013.   DOI
28 Jomehzadeh, E. and Saidi, A.R. (2012), "Study of small scale effect on nonlinear vibration of nano-plates", J. Comput. Theor. Nanosci., 9, 864-871. https://doi.org/10.1007/s10409-014-0072-3.   DOI
29 Satish, N., Narendar, S. and Gopalakrishnan, S. (2012), "Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics", Phys. E, 44, 1950-1962. https://doi.org/10.1016/j.physe.2012.05.024.   DOI
30 Shen, Z.B., Tang, H.L., Li, D.K. and Tang, G.J. (2012), "Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory", Comput. Mater. Sci., 61, 200-205. https://dx.doi.org/10.1016/j.commatsci.2012.04.003.   DOI
31 Wu, C.P. and Hu, H.X. (2021), "A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories", Acta Mechanica, 232, 4497-4531. https://doi.org/10.1007/s00707-021-03068-4.   DOI
32 Satish, N., Narendar, S. and Brahma Raju, K. (2017), "Magnetic field and surface elasticity effects on thermal vibration properties of nanoplates", Compos. Struct., 180, 568-580. https://doi.org/10.1016/j.compstruct.2017.08.028.   DOI
33 Behera, L. and Chakraverty, S. (2016), "Effect of scaling effect parameters on the vibration characteristics of nanoplates", J. Vib. Control, 22(10), 2389-2399. https://doi.org/10.1177/1077546314547376.   DOI
34 Pradhan, S.C. and Kumar, A. (2010), "Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method", Comput. Mater. Sci., 50(1), 239-245. https://dx.doi.org/10.1016/j.commatsci.2010.08.009.   DOI
35 Wu, C.P. and Li, W.C. (2017), "Free vibration analysis of embedded single-layered nanoplates and graphene sheets by using the multiple time scale method", Comput. Math. Appl., 73(5), 838-854. https://doi.org/10.1016/j.camwa.2017.01.014.   DOI
36 Wu, C.P. and Yu, J.J. (2019), "A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen's nonlocal elasticity theory", Arch. Appl. Mech., 89, 1761-1792. https://doi.org/10.1007/s00419-019-01542-z   DOI
37 Zenkour, A.M. and Al-Subhi, A.H. (2019), "Thermal vibrations of a graphene sheet embedded in viscoelastic medium based on nonlocal shear deformation theory", Int. J. Acous. Vib., 24(3), 485-493. https://doi.org/10.20855/ijav.2019.24.31342.   DOI
38 Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct., 33(2), 195-208. https://doi.org/10.12989/scs.2019.33.2.195.   DOI
39 Alazwari, M.A. and Zenkour, A.M. (2022), "A quasi-3D refined theory for the vibration of functionally graded plates resting on visco-Winkler-Pasternak foundations", Math., 10, 716. https://doi.org/10.3390/math10050716.   DOI
40 Ansari, R., Shahabodini, A. and Shojaei, M.F. (2016), "Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations", Phys. E, 76, 70-81. https://doi.org/10.1016/j.physe.2015.09.042.   DOI
41 Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011.   DOI
42 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Verlag, New York.
43 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
44 Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2021), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sand. Struct. Mater., 23(6), 2217-2244. https://doi.org/10.1177/1099636220909790.   DOI
45 Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684.   DOI
46 Aksencer, T. and Aydogdu, M. (2012), "Forced transverse vibration of nanoplates using nonlocal elasticity", Phys. E, 44(7-8), 1752-1759. https://doi.org/10.1016/j.physe.2011.12.004.   DOI
47 Arefi, M. and Zenkour, A.M. (2017), "Size-dependent free vibration and dynamic analyses of piezo-electromagnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B, 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066.   DOI
48 Chakraverty, S. and Behera, L. (2014), "Free vibration of rectangular nanoplates using Rayleigh-Ritz method", Phys. E, 56, 357-363. https://doi.org/10.1016/j.physe.2013.08.014.   DOI
49 Fan, J., Rong, D., Zhou, Z., Xu, C. and Xu, X. (2019), "Exact solutions for forced vibration of completely free orthotropic rectangular nanoplates resting on viscoelastic foundation", Eur. J. Mech./A Solid., 73, 22-33. https://doi.org/10.1016/j.euromechsol.2018.06.007.   DOI
50 Hosseini, M., Jamalpoor, A. and Bahreman, M. (2016), "Small-scale effects on the free vibrational behavior of embedded viscoelastic double-nanoplate-systems under thermal environment", Acta Astronautica, 129, 400-409. https://doi.org/10.1016/j.actaastro.2016.10.001.   DOI