• Title/Summary/Keyword: Password Protocol

Search Result 206, Processing Time 0.026 seconds

Improved Password Change Protocol Using One-way Function (일방향 함수를 이용한 개선된 패스월드 변경 프로토콜)

  • Jeon Il-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • Recently, Chang et at.$^[9]$ proposed a new password-based key agreement protocol and a password change protocol to improve the efficiency in the password-based authenticated key agreement protocol proposed by Yeh et at.$^[8]$. However, Wang et al.$^[10]$ showed that their protected password change protocol is not secure under the denial of service attack and the dictionary attack This paper proposes an improved password change protocol to solve this problems in the Chang et al's protocol. In the proposed protocol, the format of communication messages is modified not to have any clue for the guessing of the password and verifying of the guessed password. The proposed protocol supports the advantages in the previous password-based protocols and solves the problems in them effectively.

Cryptanalysis on a Three Party Key Exchange Protocol-STPKE'

  • Tallapally, Shirisha;Padmavathy, R.
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.43-52
    • /
    • 2010
  • In the secure communication areas, three-party authenticated key exchange protocol is an important cryptographic technique. In this protocol, two clients will share a human-memorable password with a trusted server, in which two users can generate a secure session key. On the other hand the protocol should resist all types of password guessing attacks. Recently, STPKE' protocol has been proposed by Kim and Choi. An undetectable online password guessing attack on STPKE' protocol is presented in the current study. An alternative protocol to overcome undetectable online password guessing attacks is proposed. The results show that the proposed protocol can resist undetectable online password guessing attacks. Additionally, it achieves the same security level with reduced random numbers and without XOR operations. The computational efficiency is improved by $\approx$ 30% for problems of size $\approx$ 2048 bits. The proposed protocol is achieving better performance efficiency and withstands password guessing attacks. The results show that the proposed protocol is secure, efficient and practical.

Cryptanalysis on Lu-Cao's Key Exchange Protocol (Lu-Cao 패스워드기반 키 교환 프로토콜의 안전성 분석)

  • Youn, Taek-Young;Cho, Sung-Min;Park, Young-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.163-165
    • /
    • 2008
  • Recently, Lu and Cao proposed a password-authenticated key exchange protocol in the three party setting, and the authors claimed that their protocol works within three rounds. In this paper, we analyze the protocol and show the protocol cannot work within three rounds. We also find two security flaws in the protocol. The protocol is vulnerable to an undetectable password guessing attack and an off-line password guessing attack.

  • PDF

Password-Based Key Exchange Protocols for Cross-Realm (Cross-Realm 환경에서 패스워드기반 키교환 프로토콜)

  • Lee, Young Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.139-150
    • /
    • 2009
  • Authentication and key exchange are fundamental for establishing secure communication channels over public insecure networks. Password-based protocols for authenticated key exchange are designed to work even when user authentication is done via the use of passwords drawn from a small known set of values. There have been many protocols proposed over the years for password authenticated key exchange in the three-party scenario, in which two clients attempt to establish a secret key interacting with one same authentication server. However, little has been done for password authenticated key exchange in the more general and realistic four-party setting, where two clients trying to establish a secret key are registered with different authentication servers. In fact, the recent protocol by Yeh and Sun seems to be the only password authenticated key exchange protocol in the four-party setting. But, the Yeh-Sun protocol adopts the so called "hybrid model", in which each client needs not only to remember a password shared with the server but also to store and manage the server's public key. In some sense, this hybrid approach obviates the reason for considering password authenticated protocols in the first place; it is difficult for humans to securely manage long cryptographic keys. In this work, we introduce a key agreement protocol and a key distribution protocol, respectively, that requires each client only to remember a password shared with its authentication server.

Recoverable Password Based Key Exchange Protocol (복구 가능한 패스워드 기반 키 분배 프로토콜)

  • 손기욱;최영철;박상준;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.97-104
    • /
    • 2001
  • In this paper, we propose Recoverable Password Based Key Exchange Protocol(RPKEP). RPKEP has user who has password, server which share the secret key information with user, and password recovery agency(PRA) which help to recover the user\`s password. Proposed protocol has some advantages that it is secure against off-line dictionary attack which is considered most important in password based key exchange protocol and suer\`s security is preserved even though user\`s secret information stored in the server is disclosed. By applying Chaum\`s blind signature scheme in the process of password recovery, even the PRA can\`t obtain any information about user\`s password.

Secure Password Authenticated Key Exchange Protocol for Imbalanced Wireless Networks (비대칭 무선랜 환경을 위한 안전한 패스워드 인증 키 교환 프로토콜)

  • Yang, Hyung-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.173-181
    • /
    • 2011
  • User authentication and key exchange protocols are the most important cryptographic applications. For user authentication, most protocols are based on the users' secret passwords. However, protocols based on the users' secret passwords are vulnerable to the password guessing attack. In 1992, Bellovin and Merritt proposed an EKE(Encrypted Key Exchange) protocol for user authentication and key exchage that is secure against password guessing attack. After that, many enhanced and secure EKE protocols are proposed so far. In 2006, Lo pointed out that Yeh et al.'s password-based authenticated key exchange protocol has a security weakness and proposed an improved protocol. However, Cao and Lin showed that his protocol is also vulnerable to off-line password guessing attack. In this paper, we show his protocol is vulnerable to on-line password guessing attack using new attack method, and propose an improvement of password authenticated key exchange protocol for imbalanced wireless networks secure against password guessing attack.

On the Security of a New C2C-PAKA Protocol (새로운 C2C-PAKA 프로토콜의 안전성 연구)

  • Byun, Jin-Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.473-483
    • /
    • 2012
  • To achieve an entire end-to-end security, the classical authentication setting such that all participants have a same password is not practical since a password is not a common secret but a personal secret depending on an individual. Thus, an efficient client to client different password-based authenticated key agreement protocol (for short, EC2C-PAKA) has been suggested in the cross-realm setting. Very recently, however, a security weakness of the EC2C-PAKA protocol has been analyzed by Feng and Xu. They have claimed that the EC2C-PAKA protocol is insecure against a password impersonation attack. They also have presented an improved version of the EC2C-PAKA protocol. In this paper, we demonstrate that their claim on the insecurity of EC2C-PAKA protocol against a password impersonation attack is not valid. We show that the EC2C-PAKA protocol is still secure against the password impersonation attack. In addition, ironically, we show that the improved protocol by Feng and Xu is insecure against an impersonation attack such that a server holding password of Alice in realm A can impersonate Bob in realm B. We also discuss a countermeasure to prevent the attack.

Improved Strong Password Mutual Authentication Protocol to Secure on Replay Attack (재전송 공격에 안전한 개선된 강력한 패스워드 상호인증 프로토콜)

  • Kim, Jun-Sub;Kwak, Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.415-425
    • /
    • 2010
  • In public network, user authentication is important security technology. Especially, password-based authentication method is used the most widely in distributed environments, and there are many authentication methods. Their SPMA protocol indicates vulnerability about problem that NSPA protocol does not offer mutual authentication, and proposed Strong Password Mutual Authentication protocol with mutual authentication. However, SPMA protocol has vulnerability of replay attack. In the paper, we analyzed vulnerability to replay attack of SPMA protocol. And we also proposed Improved Strong Password Mutual Authentication protocol to secure on replay attack with same efficiency.

Password Authenticated Joux's Key Exchange Protocol (패스워드 인증된 Joux의 키 교환 프로토콜)

  • Lee Sang-gon;Hitcock Yvonne;Park Young-ho;Moon Sang-jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.5
    • /
    • pp.73-92
    • /
    • 2005
  • Joux's tripartite key agreement protocol is one of the most prominent developments in the area of key agreement. Although certificate-based and ID-based authentication schemes have been proposed to provide authentication for Joux's protocol, no provably secure password-based one round tripartite key agreement protocol has been proposed yet. We propose a secure one round password-based tripartite key agreement protocol that builds on Joux's protocol and adapts PAK-EC scheme for password-based authentication, and present a proof of its security.

Multi Server Password Authenticated Key Exchange Using Attribute-Based Encryption (속성 기반 암호화 방식을 이용한 다중 서버 패스워드 인증 키 교환)

  • Park, Minkyung;Cho, Eunsang;Kwon, Ted Taekyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1597-1605
    • /
    • 2015
  • Password authenticated key exchange (PAKE) is a protocol that a client stores its password to a server, authenticates itself using its password and shares a session key with the server. In multi-server PAKE, a client splits its password and stores them to several servers separately. Unless all the servers are compromised, client's password will not be disclosed in the multi-server setting. In attribute-based encryption (ABE), a sender encrypts a message M using a set of attributes and then a receiver decrypts it using the same set of attributes. In this paper, we introduce multi-server PAKE protocol that utilizes a set of attributes of ABE as a client's password. In the protocol, the client and servers do not need to create additional public/private key pairs because the password is used as a set of public keys. Also, the client and the servers exchange only one round-trip message per server. The protocol is secure against dictionary attacks. We prove our system is secure in a proposed threat model. Finally we show feasibility through evaluating the execution time of the protocol.