
情報保護學會論文誌

第 22卷 第 3號, 2012. 6

새로운 C2C-PAKA 프로토콜의 안전성 연구*

변 진 욱
†‡

평택대학교 정보통신학과

On the Security of a New C2C-PAKA Protocol

Jin Wook Byun
†‡

Pyeongtaek University, Department of Information and Communication

요 약

단말 간 사용자의 안전성 확보를 위해, 동일한 패스워드를 가정하여 두 사용자를 인증하는 환경은 실용적이지 않

다. 왜냐하면, 사용자들은 각자 고유의 다른 패스워드를 암기하고 있기 때문이다. 이를 해결하기 위해 서로 다른 패스

워드를 이용한 단말간의 키 교환 (EC2C-PAKA) 프로토콜이 서로 다른 영역의 환경 (cross-realm setting) 에서

제안되었다. 최근에, 이러한 EC2C-PAKA 프로토콜에 대한 취약점이 Feng과 Xu에 의해서 주장되었다. 그들은

EC2C-PAKA 프로토콜이 패스워드 가장공격에 취약함을 주장하였다. 그들은 또한 패스워드 가장공격에 강인한 프

로토콜을 제안했다. 본 논문에서는 Feng과 Xu가 제안한 공격이 옳지 않음과 EC2C-PAKA 프로토콜이 여전히 패

스워드 가장 공격에 강인함을 보인다. 반대로, Feng과 Xu가 향상 시킨 프로토콜이 A 영역에서 Alice의 패스워드를

알고 있는 서버가 B 영역에 있는 Bob을 가장할 수 있는 가장 공격에 취약함을 보인다. 이에 대한 대처방안도 논의한

다.

ABSTRACT

To achieve an entire end-to-end security, the classical authentication setting such that all participants have a same password

is not practical since a password is not a common secret but a personal secret depending on an individual. Thus, an efficient

client to client different password-based authenticated key agreement protocol (for short, EC2C-PAKA) has been suggested in

the cross-realm setting. Very recently, however, a security weakness of the EC2C-PAKA protocol has been analyzed by Feng

and Xu. They have claimed that the EC2C-PAKA protocol is insecure against a password impersonation attack. They also have

presented an improved version of the EC2C-PAKA protocol. In this paper, we demonstrate that their claim on the insecurity

of EC2C-PAKA protocol against a password impersonation attack is not valid. We show that the EC2C-PAKA protocol is still

secure against the password impersonation attack. In addition, ironically, we show that the improved protocol by Feng and Xu

is insecure against an impersonation attack such that a server holding password of Alice in realm A can impersonate Bob in

realm B. We also discuss a countermeasure to prevent the attack.

Keywords: Password authentication, Key exchange, Different Password, Security Analysis

접수일(2011년 10월 5일), 수정일(2011년 12월 5일),

게재확정일(2011년 12월 26일)

†주저자, jwbyun@ptu.ac.kr

‡교신저자, jwbyun@ptu.ac.kr

I. Introduction

A human memorable password has stead-

ily been a popular mean for authenticating

clients over the Internet. The reason is that

the password has strengths such that it is

474 새로운 C2C-PAKA 프로토콜의 안전성 연구

easy to be memorized and implemented.

Such advantage not only brings clients

much convenience but also provides system

administrators with economic profits when

implementing an authentication system in

practice. In fact, most authentication sys-

tems rely on password authentication to

verify the identity of a user before allowing

user to login and obtain various network

resources. In addition to the authentica-

tion, securely agreeing a common session

key between a client and a server is one of

the indispensable services for a secure com-

munication over the Internet. The agreed

session keys are used to guarantee con-

fidentiality by encrypting (or decrypting)

confidential messages and verifying mes-

sage authentication codes.

In order to provide both the authentica-

tion and the confidentiality, an efficient

and secure integration of a password-based

authentication and a key agreement proto-

col has been widely studied in the

literature. Generally, we call this compound

notion as PAKA (password-based authenti-

cated key agreement). However, it has been

a challengeable task to design the PAKA

protocol satisfying both security and effi-

ciency [4,5,6,7,8,9,10,11,12,13,14,15,17]. It

is mainly due to that a selected password

from a small space allows an adversary to

mount off-line dictionary attacks in which

the adversary tries all possible combina-

tions of secret values such as telephone

number and identification number in a giv-

en small set of dictionary. Nevertheless,

many secure PAKA protocols have been

suggested and studied in terms of general

constructions using minimum cryptographic

primitives and how to securely extend to

multi-party setting.

However, most PAKA protocols have con-

centrated on a classical authentication be-

tween a client and a server. The issue is

that the PAKA protocol itself has limi-

tations to meet various requests of au-

thentication in an end-to-end situation be-

tween realms where a client Alice in a

realm A wants to establish a secure session

with a client Bob in a realm B. To achieve

end-to-end security, the setting such that

all participants have a same password is

not practical since a password is not a com-

mon secret but a secret depending on an

individual. Thus, following question is nat-

urally raised: If the password is already

pre-distributed in a secure manner, re-

spectively, why don't we generate a com-

mon session key by using different pass-

words?

1.1 Related Works and Contributions

To address the above practical issue,

Byun et al. have first designed a client to

client password authenticated key agree-

ment (C2C-PAKA) with different password

which enables two clients only holding own

password to mutually authenticate and de-

rive a common session key. Since then, the

C2C-PAKA protocol has been extensively

analyzed and revised under the various se-

curity aspects such as kinds of im-

personation and known key attacks based

on the diverse attacker's behaviors [16]. In

fact, a few improved protocols have been

suggested and subsequently have been

found to be flawed. Despite of many at-

tempts of cryptanalysis, there are still pos-

sibilities that new security breaches can be

found because their all security analysis

are based on the heuristic approach. In

2007, Byun et al. have first attempted to

establish a formal security model for

C2C-PAKA and presented a new efficient

C2C-PAKA (EC2C-PAKA) with formal se-

curity proof [2].

However, in 2009, Feng and Xu have

情報保護學會論文誌 (2012. 6) 475

promptly pointed out that the EC2C-PAKA

protocol is not secure in terms of a pass-

word impersonation attack. Generally, the

security on password impersonation means

that revealment of client Alice's password

should not enable an outside attacker to

share a session key with Alice by masquer-

ading as any other client, Bob [1]. They in-

sisted that an attacker A holding a pass-

word of Alice is able to make forged au-

thentication messages to be able to pass a

verification phase by Alice without being

noticed by Alice. Thus, A can share a ses-

sion key with Alice by masquerading as

Bob.

In this paper, first of all, we show that

the EC2C-PAKA protocol is secure against

a password impersonation attack. Concrete-

ly, we demonstrate that the original

EC2C-PAKA protocol does not allow the at-

tacker A' even obtaining Alice's password

to pass a verification phase for Alice.

Second, we examine the security of the im-

proved protocol which has been suggested

as a countermeasure against the password

impersonation attack by Feng and Xu [1].

Interestingly, the protocol is found to be

susceptible against an impersonation at-

tack in which a malicious server in realm A

can impersonate any client in realm B. We

show how it is possible in the protocol. We

finally discuss a countermeasure against

the attack.

1.2 Organization

Next chapter we revisit an EC2C-PAKA

protocol by Byun et al.[2] In Chapter 3, we

show that the EC2C-PAKA protocol is secure

against a password impersonation attack. In

Chapter 4, we describe the improved proto-

col by Feng and Xu and demonstrate that it

is insecure against an impersonation attack.

We conclude in Chapter 5.

II. Overview of EC2C-PAKA Protocol

We assume a large safe prime order 

over 
. A hash function H is defined as

⋅   → where  is the output size

of hash function. Two encryption functions

are used; one is an ideal cipher  such as

one in [3] which is a random one-to-one

function such that   → where |M| =

|C| and the other function is a CCA (chosen

ciphertext attack) secure symmetric en-

cryption E. Notations throughout paper are

listed in Table 1.

Notations Meaning

 , identifiers of Alice and Bob

R, R'
ephemeral Diffie-Hellman keys for

Alice and  , Bob and 

K
a common symmetric key pre-dis-

tributed for  and 


a session key agreed between

Alice and Bob


a common key distributed for

Alice and Bob

Ticket_ B a service ticket for Bob

L a lifetime of 

MAC_k(m)
an output of MAC applied key k

for a message m

||
two adjacent messages are

concatenated.

Sign_X(m)
a signature of message m signed

by X's secret key.

E_X(m)
an encryption of message m with

X's public key.

[Table 1] Notations

2.1 Protocol Preliminaries

Preliminaries for a protocol run are as

follows.

1. g and q are global public parameters

shared by all protocol participants,

where q is a prime order and g is a

476 새로운 C2C-PAKA 프로토콜의 안전성 연구

generator over a cyclic group 
.

2. Alice (Bob) shares her password pwa

(pwb) with server  ( , re-

spectively) by using algorithms 

and R.

2.2 Protocol Description of EC2C-PAKA

The EC2C-PAKA protocol is illustrated in

Figure 1. It works as follows.

1. Alice chooses a random value  from 


randomly then computes  and sends

=
  to  along with  and

 .

2.  obtains  by decrypting  , cho-

oses ∊
 randomly, and computes 

= 
  and R= .  also

generates a random key  from 
 for

Alice and Bob and computes =

  .  specifies L, a life-

time of . Then  makes

(=) and sends ,

 , and  to Alice.

3. Upon receiving the message from

, Alice computes an ephemeral

key R and decrypts  to obtain the

distributed key . Alice also checks

whether  and  are correct or

not. The encrypted message,  
  is

also sent to Bob for authentication.

4. Alice generates a random value ∊


and makes   


. Then she

forwards , , and  to Bob.

5. Bob chooses ′∊ randomly and com-

putes ′=′. Then he sends ′
and  to  .

6.  obtains , L, and  by decrypt-

ing  by using its key K. 

first examines the validity of  by

checking the lifetime L and . If the

validation check is successful, 

selects ′∊ randomly and computes

′=(
 ′) and  ′(= ′ 

where R' is  ′′.  finally sends

 ′ and  ′ to Bob.

7. Bob decrypts  ′ and computes R'(=

 ′′). Then Bob decrypts  ′ =

 ′  to get the key k. Bob

computes  ′′ for a random ′∊
and send it to  for authenti-

cation.

8. Bob decrypts  ′ and computes R'.

Then Bob decrypts  ′ to get the key

. Using the key , Bob checks  by

verifying the previously received .

Bob generates a random value ∊


and makes sk'(=
 and

=


. Finally Bob sends

 to Alice. Upon receiving the mes-

sage , Alice also generates a com-

mon session key sk.

9. Upon receiving the message, Alice con-

firms the authenticator by using sk'

and makes ′. Alice sends this

back to Bob. If the confirmation proc-

esses are successful, then Alice and

Bob generate a common session key

sk=′.

III. Analysis of Attack on EC2C-PAKA

Protocol

In this section, we describe an attack

scenario suggested by Feng and Xu and

demonstrate that the attack is invalid.

First, an attacker A' is assumed to have a

password pwa of Alice and then tries to

masquerade as Bob. Finally the goal of the

attacker is to share a common session key

with Alice as Bob.

情報保護學會論文誌 (2012. 6) 477

[Figure 1] The original EC2C-PAKA Protocol

3.1 A scenario of password impersonation

attack

1. A' captures message,  from

the step (1). A' can decrypt  and ob-

tain  . Values,

∊

,  are

chosen randomly by A' then =


 ,  ,   

 

are calculated by A'. A' sends , ,

 to Alice in the step (2) instead

of . Then Alice keeps the key 

chosen by A'.

2. From the step (4) of the protocol, A'

obtains  and selects ∊
 randomly.

In the step (8), A' sends

  
 

 to Alice as if it is origi-

nated from Bob.

3. The forged message will be valid for

Alice during the step (8) since A' has

the same  as Alice. Finally, A' can be

successfully authenticated by Alice as

a client Bob and also shares a session

key =
 with Alice.

3.2 Analysis of the Attack

The attack mainly dues to an assumption

that an attacker A' obtaining pwa can go

through the verification test at the side of

Alice during step (8). To be precisely, the

test of step (8) verifies MAC tag with the

common key  and  which were chosen

randomly by A', as follows.

  
 



The above verification is always valid

since Alice maintains the same key .

However, before(or even after) sending the

above forged tag message to Alice in the

step (8), A' must pass critical verification

processes remaining in the step (6) and (8).

Since A' cannot pass the verification proc-

478 새로운 C2C-PAKA 프로토콜의 안전성 연구

esses, every involving participant finally

gets to recognize that all processes are

invalid. To be precisely, let's go back the

above attack scenario and consider the im-

personation attack again.

A' sends the followings to Alice in the

step (2).

  
 

  
 



The point is that ,  and  were

randomly created by A'.

1. As explained earlier, A' can send

  
 

 to Alice in the step (8)

as if it is originated from Bob.

However, before doing it, the follow-

ing verification tests in the step (6)

and (8) prevent A' from impersonat-

ing as Bob.

   

  
 



First, in the step (5), the ticket  ,

which is randomly selected by A', is trans-

ferred to  . In the step (6),  de-

crypts it and obtains a distinct key ′ ≠ 
and verifies a validity check of 

through the above equation (2). However,

the inconsistent key ′ always results in

failing of verification in the equation (2). It

is attributed to a fact that the common key

k of  is selected by the valid 

and securely protected by a private key K

hence nobody knows it except the valid

 and . Second, in the step (8),

Bob should do check the tag message

  
 

 previously received in the

step (4). Originally, this tag message is

calculated using the key  chosen by the

valid Bob. However, the message of step (2)

is forged by A' as the form of equation (1)

and it makes Alice to possess the key .

Since it is not consistent with the key ,

the verification of step (8) does not always

succeed. Therefore, A' never be able to gen-

erate both a valid ticket and MAC tag of 

to satisfy the equation (2) and (3) without

knowing K.

3. Nevertheless, in the step (8), A' may

try to generate a session key ′=


 with Alice by just

sending   
 

 as quick as

possible. However, the valid client Bob

already has noticed that the ver-

ification has been invalid in the steps

(5) and (8). Even if the message of (8)

has been sent to Alice, Bob always

still has a chance to reject Alice and

be able to let all parties know the cur-

rent protocol is failed.

IV. Vulnerability of an improved

C2C-PAKA protocol

In this section, we briefly introduce an

improved version of C2C-PAKA protocol

suggested by Feng and Xu [1] and demon-

strate that it is insecure against an im-

personation attack where a server  in

the realm A is able to impersonate Bob in

the realm B.

4.1 Overview of an improved C2C-PAKA

protocol

The protocol consists of (8) steps. It is il-

lustrated in Figure 2.

1. Alice sends the message , to

.  randomly selects  ∊


and encrypts  with pwa then trans-

fer   
 .

情報保護學會論文誌 (2012. 6) 479

[Figure 2] The improved EC2C-PAKA Protocol by Xu and Feng

2. Alice can obtain  and randomly choo-

ses ∊
. Then she calculates

  
 ,  , and

  
 . Finally, Alice sends

, to .

3. On receiving the message from Alice,

 decrypts  and obtains  and

checks the validity of  by using .

 randomly chooses  ∊
 and cal-

culates = 
  and  =


 and sends

,  to Alice.

4. On receiving the message from ,

Alice checks the signature of  is

valid. Alice computes  and forwards

,  to Bob.

5. Bob selects ∊
 and calculates

 
  then the messages

, are forwarded to

 .

6.  obtains  from .  de-

crypts  and verify the signature

of .  obtains  and  and

selects ′∊ randomly.  also com-

putes the message  ′ ′ ′ and en-

crypts it with ′ ′, then makes

   ′ ′ ′,  
 ′,

which are sent to Bob.

7. With the message from , Bob

checks  and computes ′ ′ 
and computes  ′ by decrypting

. Bob calculates    ′,    ′,
and = 

 . Bob sends

 to Alice for a session key

confirmation.

8. With the message , Alice com-

putes    ′ and computes


  which is verified with

the message . If it holds, Alice au-

thenticates Bob. Alice computes =


 .  is also sent to

480 새로운 C2C-PAKA 프로토콜의 안전성 연구

[Figure 3] A password impersonation attack on Feng and Xu's protocol

Bob for a session key confirmation.

With the message , Bob computes


  and verifies with .

If it succeeds, Bob authenticates

Alice. A common session key between

Alice and Bob is 
 ′

4.2 Vulnerability of the improved C2C-PAKA

scheme by Xu and Feng

Xu and Feng presented a new improved

version of C2C-PAKA protocol [1]. We dem-

onstrate that the improved scheme is weak

against an impersonation attack by a mali-

cious server  . If we assume a malicious

 which keeps a password pwa for a cli-

ent Alice, then it can impersonate a client

Bob in realm B. The attack is performed as

follows. The scenario is illustrated in

Figure 3.

1. Since the malicious server  has a

password pwa,  can decrypt ,

 from the step (2) of the protocol

and then keeps  . In order to im-

personate Bob,  should send mes-

sages of step (5) instead of Bob. To do

so,  randomly chooses ′∊
and sends  ′ to Bob.

2. In the step (6),  sends back 

to  and then  simply ignores

the message .

3. For the step (7),  first chooses a

random value ∊
 and calculates

    with the value of  obtained

from the step (2). The forged message

′, ′ for the step (7) are calculated

as follows.

′
′ 

4. On the step (7), the valid client Alice

情報保護學會論文誌 (2012. 6) 481

[Figure 4] Countermeasure

computes   ′   by using the

chosen random value x and verifies ′
by using the computed cs and  .

Hence no fail happens.

5. In the step (8),  receives  and

generates 
 . There-

fore, the malicious  succeeds in

impersonating Bob and generating a

session key .

4.3 Countermeasure

In order to deter the impersonation at-

tack from the malicious , we need a

kind of verification check which enables

 to recognize itself that the protocol is

being cheated, and finally it is able to let

all involving participants know the current

protocol fails. Indeed, the difference be-

tween two protocols [1, 2] in terms of struc-

ture of communication is the absence of the

authentication from  to Bob, which ac-

tually induces an impersonation attack by

an insider server . Basic idea to deal

the attack is to simply inject authentica-

tions into weakness point of the protocol.

Concretely, two tags for authentications are

required. The first authentication tag is

added after the step (6), as a form of

 ′ ′, which is transferred from Bob to

 . The second authentication tag is for

Alice to authenticate Bob, as a form of hash

based authenticator . The first tag is

an actual countermeasure for the im-

personation attack and the second tag is

just for adding mutual authentication for

Alice and Bob. Two authentication tags are

illustrated in Figure 4.

4.4 Analysis of Countermeasure

As illustrated in Figure 4, despite of add-

ing two authentication tags, the malicious

 holding password pwa is still able to

make messages in the step (5) and to per-

fectly forge messages ′′ in the step (8)

to go through verification process.

′
′′ 

However, on the side of  ,

should face an authentication process

 ′ ′ for ′ ′ in the step (7) of

Figure 4.  with pwa never be able to

compute ′ ′ satisfying ′ ′ ′
because ′ was selected randomly by 

hence  cannot compute  and ′.

482 새로운 C2C-PAKA 프로토콜의 안전성 연구

Finally,  is able to let everyone know a

fail of the protocol.

V. Concluding Remarks

It has been not only complicated but also

prone to error to design a password-based

key agreement protocol preserving both se-

curity and efficiency. Even though a proto-

col is designed under the well-known se-

curity model and computational assump-

tions with formal security proof, there are

still possibilities that subtle faults can be

found in the protocol, as we have shown in

this paper. It also reminds that we should

much more pay attention when performing

a security analysis on a certain protocol.

In this paper, we have pointed out that

the claim of insecurity on EC2C-PAKA in

[1] is not valid. In addition, we have shown

that the improved C2C-PAKA protocol by

Xu and Feng has vulnerability against an

impersonation attack by a malicious server.

A countermeasure of the attack is also

discussed.

Reference

[1] D. Feng and J. Xu, “A new client-to-client

password-authenticated key agreement

protocol,” IWCC‘09, LNCS 5557, pp.

63-76, Jun. 2009.

[2] J. W. Byun, D. H. Lee, J. I. Lim,

“EC2C-PAKA: an efficient client-to-cli-

ent password-authenticated key agree-

ment,” Information Science, vol 177, pp.

3995-4013, Oct. 2007.

[3] J. Black and P. Rogaway, “Ciphers with

arbitrary finite domains,” RSA Data

Security Conference, Cryptographer's

Track (RSA CT '02), LNCS 2271, pp.

114-130, Feb. 2002.

[4] H. Chung, W. Ku, M. Tsaur, “Weakness

and improvement of Wang et al.'s remote

user password authentication scheme for

resource limited environments,” Com-

puter Standards and Interfaces, vol. 31

pp. 863-868, Jun. 2009.

[5] Han-Cheng Hsiang, Wei-Kuan Shih,

“Weaknesses and improvements of the

Yoon-Ryu-Yoo remote user authenti-

cation scheme using smart cards,”

Computer Communications, vol. 32,

issue 4, pp. 649-652 Mar. 2009.

[6] P. Kocher, J. Jaffe, B. Jun, Differential

power analysis, Proc. Advances in

Cryptology, CRYPTO'99, pp. 388-397,

Aug. 1999.

[7] N. Y. Lee, Y. C. Chiu, “Improved remote

authentication scheme with smart card,”

Computer Standards and Interfaces, vol.

27 issue. 2, pp. 177-180, Jan. 2005.

[8] J. Munilla, A. Peinado, “Off-line pass-

word-guessing attack to Peyravian-Jeff-

ries’s remote user authentication

protocol,” Computer Communications,

vol. 30, issue 1, pp. 52-54, Dec. 2006.

[9] Binod Vaidya, Jong Hyuk Park, Sang-Soo

Yeo, Joel J.P.C. Rodrigues, “Robust

one-time password authentication sche-

me using smart card for home network

environment,” Computer Communica-

tions, vol. 34, issue 3, pp. 326-336, Mar.

2010.

[10] Shengbao Wang, Zhenfu Cao, Maurizio

Adriano Strangio, Lihua Wang, “Cryp-

tanalysis and improvement of an elliptic

curve Diffie-Hellman key agreement

protocol,“ IEEE Communications Let-

ters, Vol. 12, no. 2, pp. 149-151, Feb. 2008,

[11] Yan-yan Wang, Jia-yong Liu, Feng-xia

Xiao, Jing Dan, “A more efficient and

secure dynamic ID-based remote user

authentication scheme,” Computer Com-

munications, vol. 32, Issue 4, pp. 583-585,

Mar. 2009.

[12] X.M. Wang, W.F. Zhang, J.S. Zhang,

M.K. Khan, “Cryptanalysis and im-

<著者紹介>

변 진 욱 (Jin Wook Byun) 정회원

2001년 2월: 고려대학교 전산학과 이학사

2003년 2월: 고려대학교 정보보호대학원 정보보호 전공, 공학 석사

2006년 8월: 고려대학교 정보보호대학원 정보보호 전공, 공학 박사

2006년 11월～2007년 12월: 영국 런던대학교, ISG 박사후 연구원

2008년 03월~현재: 평택대학교 정보통신학과 조교수

<관심분야> 사용자 인증, 프라이버시 보호 기술, 데이터베이스 보안, 암호 프로토콜

情報保護學會論文誌 (2012. 6) 483

provement on two efficient remote user

authentication scheme using smart

cards,” Computer Standards and

Interfaces vol. 29 no. 5, pp. 507-512, Jul.

2007.

[13] Jing Xu, Wen-Tao Zhu, and Deng-Guo

Feng, “An improved smart card based

password authentication scheme with

provable security,” Computer Standards

and Interfaces, vol. 31, issue 4, pp.

723-728, Jun. 2009.

[14] Her-Tyan Yeh, Hung-Min Sun, Tzonelih

Hwang, “Security analysis of the

generalized key agreement and password

authentication protocol,” IEEE Com-

munications Letters, Vol. 5, no. 11, pp.

462-463, Nov. 2001

[15] Muxiang Zhang, Yuguang Fang, “Secu-

rity analysis and enhancements of 3GPP

authentication and key agreement

protocol,” IEEE Transactions on Wireless

Communications, vol. 4, no. 2, pp.

734-742, Mar. 2005.

[16] 변진욱, 정익래, 이동훈, “서로 다른 패스워드워드

를 가진 사용자간의 패스워드 인증 키 교환 프로토

콜,” 정보보호학회논문지, 13(1), pp. 27-38,

2003년 2월.

[17] 변진욱, “효율적이고 안전한 스마트카드 기반 사용

자 인증 시스템 연구,” 전자공학회논문지 48권 TC

편 제 2호, pp. 105-115, 2011년 2월.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [1734.803 2245.040]
>> setpagedevice

