• Title/Summary/Keyword: Passive work

Search Result 374, Processing Time 0.029 seconds

Development of Passive Solar Water Heater 1. Selective absorbers (자연형 온수 급탕시스템 개발)

  • Lee, K.D.;Auh, P.C.M.;You, C.K.
    • Solar Energy
    • /
    • v.4 no.2
    • /
    • pp.29-36
    • /
    • 1984
  • This paper reviews the current status of R&D work on selective absorber materials. For the efficient utilization of solar energy, various types of selective absorber materials are being used for solar hot water heaters. Many selective absorbers which have been proposed and designed up to data are classified according to the absorption mechanisms. Temperature-time cycle method is often recommended for the measurement of solar absorptance. In addition, conversion efficiency of the solar collector with selective surface is compared with one with black paint surface.

  • PDF

It is Time to Have Rest: How do Break Types Affect Muscular Activity and Perceived Discomfort During Prolonged Sitting Work

  • Ding, Yi;Cao, Yaqin;Duffy, Vincent G.;Zhang, Xuefeng
    • Safety and Health at Work
    • /
    • v.11 no.2
    • /
    • pp.207-214
    • /
    • 2020
  • Background: Prolonged sitting at work can lead to adverse health outcomes. The health risk of office workers is an increasing concern for the society and industry, with prolonged sitting work becoming more prevalent. Objective: This study aimed to explore the variation in muscle activities during prolonged sitting work and found out when and how to take a break to mitigate the risk of muscle symptoms. Methods: A preliminary survey was conducted to find out the prevalence of muscle discomfort in sedentary work. Firstly, a 2-h sedentary computer work was designed based on the preliminary study to investigate the variation in muscle activities. Twenty-four participants took part in the electromyography (EMG) measurement study. The EMG variations in the trapezius muscle and latissimus dorsi were investigated. Then the intervention time was determined based on the EMG measurement study. Secondly, 48 participants were divided into six groups to compare the effectiveness of every break type (passive break, active break of changing their posture, and stand and stretch their body with 5 or 10 mins). Finally, data consisting of EMG amplitudes and spectra and subjective assessment of discomfort were analyzed. Results: In the EMG experiment, results from the joint analysis of the spectral and amplitude method showed muscle fatigue after about 40 mins of sedentary work. In the intervention experiment, the results showed that standing and stretching for 5 mins was the most effective break type, and this type of break could keep the muscles' state at a recovery level for about 30-45 mins. Conclusions: This study offers the possibility of being applied to office workers and provides preliminary data support and theoretical exploration for a follow-up early muscle fatigue detection system.

Selecting of Earth-work Equipment Combination Considered CO2 Emission (이산화탄소 배출량을 고려한 토공 장비조합의 선정)

  • Kim, Byung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1750-1756
    • /
    • 2011
  • After Kyoto Protocol was adopted for green gas reduction, each nations are stepping up efforts to reduce $CO_2$ of a typical green gas. Construction industry also is trying $CO_2$ reduction with the techniques of two types which are software and hardware techniques. The software technique are Passive Design considered green gas emission and the environment impact assessment by LCA. The hardware techniques are adjustment of equipment system and development of eco- friendly material. But, it is nonexistent that a study related to $CO_2$ emission considered detail process in construction industry. This study analyzed the relativeness of equipment combination and $CO_2$ emission by calculate $CO_2$ emission follow to equipment combination on earth-work which is the process emitted most $CO_2$ among railway bedding construction.

  • PDF

Review on Magnetic Components: Design & Consideration in VHF Circuit Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.180-187
    • /
    • 2009
  • When converters operate in megahertz range, the passive components and magnetic devices generate high losses. However, the eddy current issues and choices of magnetic cores significantly affect on the design stage. Apart from that, the components' reduction, miniaturization technique and frequency scaling are required as well as improvement in thermal capability, integration technique, circuit topologies and PCB layout optimization. In transformer design, the winding and core losses give great attention to the design stage. From simulation work, it is found that E-25066 material manufactured by AVX could be the most suitable core for high frequency transformer design. By employing planar geometry topology, the material can generate significant power loss savings of more than 67% compared to other materials studied in this work. Furthermore, young researchers can use this information to develop new approaches based on concepts, issues and methodology in the design of magnetic components for high frequency applications.

Verification of SPACE Code with MSGTR-PAFS Accident Experiment (증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증)

  • Nam, Kyung Ho;Kim, Tae Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

Assessment of Occupational Symptoms and Chemical Exposures for Nail Salon Technicians in Daegu City, Korea

  • Park, Sung-Ae;Gwak, Sugyeong;Choi, Sangjun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • Objectives: This study aimed to evaluate occupational symptoms and chemical exposures of nail salon technicians. Methods: Work-related symptoms of nail salon technicians in Daegu City were surveyed using a researcher-administered questionnaire, and responses were compared to those of non-exposed office workers as controls. Personal exposure level of airborne volatile organic compounds was also monitored using passive samplers. Results: A total of 159 subjects in 120 salons were interviewed. Average work-shift concentrations of 13 chemicals were measured for 50 workers from 30 salons using personal passive samplers. The most frequently reported respiratory or neurologic symptoms by nail shop technicians compared to controls were nose irritation (odds ratio [OR], 54.0; confidence interval [CI], 21.6 to 134.8), followed by headache (OR, 9.3; CI, 4.7 to 18), and throat irritation (OR, 4.3; CI, 2.2 to 8.5). For eyes and skin, 92% of respondents complained eye irritation (OR, 13.1; CI, 5.7 to 30.1). In musculoskeletal symptoms, workers reported pain or discomfort in shoulders (OR, 20.3; CI, 7.7 to 54) and neck (OR, 19.7; CI, 8.9 to 43.6). From personal measurements, the proportion of exceeding the Korean Occupational Exposure Limit was the highest for acetone with 64%, followed by toluene (50%), butyl acetate (46%), and methyl methacrylate (12%). However, the service was being provided without a proper ventilation system in most surveyed shops. Conclusions: Based on these findings, it is warranted to have appropriate local exhaust ventilation place to ensure adequate health protection of nail shop technicians as well as customers. At the same time, greater policy interests are warranted in nail care business to protect health of both workers and customers.

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

Controller with Voltage-Compensated Driver for Lighting Passive Matrix Organic Light Emitting Diodes Panels

  • Juan, Chang Jung;Tsai, Ming Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.673-675
    • /
    • 2004
  • This study proposes controller with voltage-compensated drivers for producing gray-scaled pictures on passive matrix organic light emitting diodes (PMOLEDs) panels. The controller includes voltage type drivers so the output impedance of the driver is far less than that of the current-type driver. Its low output impedance provides better electron-optical properties than those of traditional current drivers. A free running clock and a group of counters are applied to the gray-scaled function so that phase lock loop (PLL) circuit can be reduced in the controller. A pre-charge function is used to enhance performance of the luminance of an active OLED pixel. As a result, distribution of the low gray level portion is achieved linear relationship with input data. In this work, the digital part of the proposed controller is implemented using FPGA chips, and analog parts are combined with a digital-analog converter (DAC) and analog switches. A still image is displayed on a $48^{\ast}64$ PMOLEDs panel to assess the luminance performance fir the controller. Based on its cost requirement and luminance performance, the controller is qualified to join the market for driving PMOLEDs panels.

  • PDF

Slotted hydrofoil design optimization to minimize cavitation in amphibious aircraft application: A numerical simulation approach

  • Conesa, Fernando Roca;Liem, Rhea Patricia
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.309-333
    • /
    • 2020
  • The proposed study aims to numerically investigate the performance of hydrofoils in the context of amphibious aircraft application. In particular, we also study the effectiveness of a slotted hydrofoil in minimizing the cavitation phenomenon, to improve the overall water take-off performance of an amphibious aircraft. We use the ICON A5 as a base model for this study. First, we propose an approach to estimate the required hydrofoil surface area and to select the most suitable airfoil shape that can minimize cavitation, thus improving the hydrodynamic efficiency. Once the hydrofoil is selected, we perform 2D numerical studies of the hydrodynamic and cavitating characteristics of a non-slotted hydrofoil on ANSYS Fluent. In this work, we also propose to use a slotted hydrofoil to be a passive method to control the cavitation performance through the boundary layer control. Numerical results of several slotted configurations demonstrate notable improvement on the cavitation performance. We then perform a multiobjective optimization with a response surface model to simultaneously minimize the cavitation and maximize the hydrodynamic efficiency of the hydrofoil. The optimization takes the slot geometry, including the slot angle and lengths, as the design variables. In addition, a global sensitivity study has been carried and it shows that the slot widths are the more dominant factors.