• Title/Summary/Keyword: Passive sonar target

Search Result 62, Processing Time 0.019 seconds

Performance Analysis of Own Ship Noise Cancellation in Hull Mounted Sonar System Using Adaptive Filter (HMS시스템에서 적응필터를 이용한 자함의 소음감소 성능분석)

  • Yoon, Kyung-Sik;Jung, Tae-Jin;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • In a passive sonar, the improvement of detection performance by using noise cancellation is usually a important problem. In this paper, we have analyzed the own-ship noise cancellation in the two operation modes which are used in the HMS system. In the operator mode, an adaptive line enhancer(ALE) is applied to improve the tonal detection by using broadband noise cancellation and the normalized least mean square(NLMS) algorithm is applied to the design of an adaptive filter. The reference input that is correlated with a primary input can be used to remove the noise incident on the observation directionin the automatic mode. Computer simulations with real sea that data show that the proposed adaptive noise canceller has good performance in passive detection under HMS operation.

The Improvement of Target Motion Analysis(TMA) for Submarine with Data Fusion (정보융합 기법을 활용한 잠수함 표적기동분석 성능향상 연구)

  • Lim, Young-Taek;Ko, Soon-Ju;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.697-703
    • /
    • 2009
  • Target Motion Analysis(TMA) means to detect target position, velocity and course for using passive sonar system with bearing-only measurement. In this paper, we apply the TMA algorithm for a submarine with Multi-Sensor Data Fusion(MSDF) and we will decide the best TMA algorithm for a submarine by a series of computer simulation runs.

Bearing tracking algorithm appropriate for underwater environment (수중환경에 적합한 방위각 추적 알고리즘)

  • 허용석;김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.558-563
    • /
    • 1992
  • Bearing information of target is used critically for target tracking in underwater environment. In passive sonar, target bearing measurements are obtained by processing the acoustic signal emanating from the target. PDA tracking algorithm is usually applied in this case since bearing measurements have several peaks due to interference with other acoustic sources or reflections from underwater media. In this paper, we propose a modified PDA algorithm adopting new probabilistic distributions of the number, position, and amplitude of peaks based on the analysis of real data. This algorithm is tested on real and artificially generated data. The computer simulation result shows improvement of the tracking performance.

  • PDF

Position error estimation of sub-array in passive ranging sonar based on a genetic algorithm (유전자 알고리즘 기반의 수동측거소나 부배열 위치오차 추정)

  • Eom, Min-Jeong;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol;Oh, Se-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.630-636
    • /
    • 2019
  • Passive Ranging Sonar (PRS) is a type of passive sonar consisting of three sub-array on the port and starboard, and has a characteristic of detecting a target and calculating a bearing and a distance. The bearing and distance calculation requires physical sub-array position information, and the bearing and distance accuracy performance are deteriorated when the position information of the sub-array is inaccurate. In particular, it has a greater impact on distance accuracy performance using plus value of two time-delay than a bearing using average value of two time-delay. In order to improve this, a study on sub-array position error estimation and error compensation is needed. In this paper, We estimate the sub-array position error based on enetic algorithm, an optimization search technique, and propose a method to improve the performance of distance accuracy by compensating the time delay error caused by the position error. In addition, we will verify the proposed algorithm and its performance using the sea-going data.

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario (위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발)

  • Shin, Myoungin;Lee, Jinho;Hong, Wooyoung;Kim, Woo Shik;Bae, Hoseuk;Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.21-33
    • /
    • 2020
  • This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

Multiple vertical depression-based HMS active target detection using GSFM pulse (GSFM 펄스를 이용한 다중 수직지향각 기반 선체고정소나 능동 표적 탐지)

  • Hong, Jungpyo;Cho, Chomgun;Kim, Geunhwan;Lee, Kyunkyung;Yoon, Kyungsik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.237-245
    • /
    • 2020
  • In decades, active sonar, which transmits signals and detects incident signals reflected by underwater targets, has been significantly studied since passive sonar in Anti-Submarine Warfare (ASW) detection performance becomes lowered, as underwater threats become their radiated noise reduced. In general, active sonar using Hull-Mounted Sonar (HMS) adjusts vertical tilt (depression) and sequentially transmits multiple Linear Frequency Modulation (LFM) subpulses which have non-overlapped bands, i. e. 1 kHz ~ 2 kHz, 2 kHz ~ 3 kHz, in order to reduce shadow zones. Recently, however, Generalized SFM (GSFM), which is generalized form of SFM, is proposed, and it is confirmed that subpulses of GSFM have orthogonality among each other depending on setting of GSFM parameters. Hence, in this paper, we applied GSFM to active target detection using HMS to improve the performance by the signal processing gain obtained from enlarged bandwidths of GSFM subpulses compared to those of LFM subpulses. Through simulation, we verified that when the number of subpulses is three, the matched filter gain of GSFM is approximately 5 dB higher than that of LFM.

MOving Spread Target signal simulation (능동 표적신호 합성)

  • Seong, Nak-Jin;Kim, Jea-Soo;Lee, Snag-Young;Kim, Kang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.30-37
    • /
    • 1994
  • Since the morden targets are of high speed and getting quiet in both active and passive mode, the necessities of developing advanced SONAR system capable of performing target motion analysis (TMA) and target classification are evident. In order to develop such a system, the scattering mechanism of complex bodies needs to be, some extent, fully understood and modeled. In this paper, MOving Spread Target(MOST) signal simulation model is presented and discussed. The model is based on the highlight distribution method, and simulates pulse elongation of spread target, doppler effect due to kinematics of the target as well as SONAR platform, and distribution target strength of each highlight point (HL) with directivity. The model can be used in developing and evaluating advanced SONAR system through system simulation, and can also be used in the development of target state estimation algorithm.

  • PDF

Implementation of the omnidirectional target bearing detector utilizing towed linear arrays (예인선배열 센서를 이용한 전방위 표적방위 탐지기 구현)

  • 이성은;천승용;황수복;이형욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise(S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. Detection of modern underwater targets is becoming increasingly difficult as noise reduction technology leads to considerably low-level acoustic emissions. Therefore, the improvement of beamforming is very important to detect modern underwater targets at the long range in the complex environmental sea. Also, to react to the fast attack mobiles such as torpedoes, port and starboard discrimination is required to be performed very quickly. In this paper, we proposed the implementation of omnidirectional target bearing detector without port and starboard ambiguity to detect effectively the low-level underwater targets. The port and starboard discrimination is performed by cardioid processing and the improvement of beamforming utilizes the cross correlation matrix of individual hydrophone pairs of linear array sensors. The sea test result shows that the system implemented is good for the detection of the low-level underwater targets.

Improvement of Target Motion Analysis for a Passive Sonar System with Measurement Bias Estimation (측정각 Bias 보상을 통한 수동소나체계의 표적기동분석 성능 향상 연구)

  • Yoo, Phil-Hoon;Song, Taek-Lyul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2011-2013
    • /
    • 2001
  • In this paper the MMAE(Multiple Model Adaptive Estimation) algorithm using the MGEKF(Modified Gain Extended Kalman Filter) of which modes are set to be measurement biases is proposed to enhance the performance of target tracking with bearing only measurements. The state are composed of relative position, relative velocity and taregt acceleration. The mode probability is calculated from the bearing only measurements from the HMS(Hull-Mounted Sonar). The proposed algorithm is tested in a series of computer simulation runs.

  • PDF

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.