• 제목/요약/키워드: Passive safety system

검색결과 224건 처리시간 0.021초

외피의 Passive Design 요소와 신재생에너지를 적용한 생물안전 밀폐시설의 에너지 시스템 개선방안 연구 (A Study on the Energy Improvement Plan of using Passive Design with Exterior Envelopes and Renewable Energy for Bio Safety Labotratory)

  • 황지현;범도;홍진관
    • 설비공학논문집
    • /
    • 제26권10호
    • /
    • pp.491-496
    • /
    • 2014
  • In general, the entire air supply of a bio-safety laboratory (BSL) should be exhausted on the outside to ensure bio-safety, and the air conditioning system should always be operated to maintain a difference in the room pressure. As a result, the annual energy consumption of such a building is approximately five or ten times higher than that of an office building of the same magnitude. Thus, this study applies an actual operating system that targets BSL. The energy consumption is analyzed using the Energy Plus V8.0 program (an energy analysis program), and five kinds of cases that depend on the energy consumption of the basic BSL system are also analyzed. As a result, the energy consumption in Case 1 (basic system) is of 324.95 GJ. When the basic system of Case 1 is compared to that in Case 2 (basic system+passive design with exterior envelopes), an annual energy savings of is 6.9% is achieved. For Case 3 (basic system+Photovoltaic, PV) 12.7% is achieved, and for Case 4 (Solar Geothermal Hybrid System of renewable energy, SGHS) 49.5% is achieved. If a passive design with exterior envelopes and renewable energy system (PV+SGHS) is combined, as in Case 5, the energy consumption would be 118.15 GJ. Therefore, when this last system is compared to a basic system, the passive design with exterior envelopes and renewable energy system (PV+SGHS) can reduce energy consumption by 63.6%.

빌딩간 연결을 통한 복합제어시스템의 최적설계 (Optimal Design of Hybrid Control System through Inter-Building Connection)

  • 박관순;옥승용
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.81-88
    • /
    • 2017
  • This study deals with the optimal design of a hybrid control system composed of a combination of active control system and passive control system for effective seismic performance improvement of two adjacent structures. The proposed hybrid control system adopts a configuration of installing an active control device in one building and connecting two adjacent structures with a passive control device so that the one-side active control force can be bi-directionally applied to both buildings through the passive connecting devices. In order to derive the optimal performance of the proposed system, the design parameters of the passive and active control systems were searched using the genetic algorithm. Numerical simulations of 10-story and 8-story buildings have been performed to verify the effectiveness of the proposed technique. For the purpose of comparison, the conventional independent control system with two identical active control systems being installed separately for each structure was also optimally designed and its seismic response has been evaluated as well. From the comparative results of the two control systems, it is demonstrated that the proposed hybrid control system requires larger control force for its one-side active control device than the conventional independent control system does for each of both-side active devices, but quite less than the total control force required for both-side devices of the independent control system, while maintaining similar seismic performance. Therefore, the proposed system is more economical and reliable than the conventional independent control system with two identical active devices.

Level 1 probabilistic safety assessment of supercritical-CO2-cooled micro modular reactor in conceptual design phase

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.498-508
    • /
    • 2021
  • Micro reactors are increasingly being considered for utilization as distributed power sources. Hence, the probabilistic safety assessment (PSA) of a direct supercritical-CO2-cooled fast reactor, called micro modular reactor (MMR), was performed in this study; this reactor was developed using innovative design concepts. It adopted a modular design and passive safety systems to minimize site constraints. As the MMR is in its conceptual design phase, design weaknesses and valuable safety insights could be identified during PSA. Level 1 internal event PSA was carried out involving literature survey, system characterization, identification of initiating events, transient analyses, development of event trees and fault trees, and quantification. The initiating events and scenarios significantly contributing to core damage frequency (CDF) were determined to identify design weaknesses in MMR. The most significant initiating event category contributing to CDF was the transients with the power conversion system initially available category, owing to its relatively high occurrence frequency. Further, an importance analysis revealed that the safety of MMR can be significantly improved by improving the reliability of reactor trip and passive decay heat removal system operation. The findings presented in this paper are expected to contribute toward future applications of PSA for assessing unconventional nuclear reactors in their conceptual design phases.

Multivariate analysis of critical parameters influencing the reliability of thermal-hydraulic passive safety system

  • Olatubosun, Samuel Abiodun;Zhang, Zhijian
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.45-53
    • /
    • 2019
  • Thermal-hydraulic passive safety systems (PSSs) are incorporated into many advanced reactor designs on the bases of simplicity, economics and inherent safety nature. Several factors among which are the critical parameters (CPs) that influence failure and reliability of thermal-hydraulic (t-h) passive systems are now being explored. For simplicity, it is assumed in most reliability analyses that the CPs are independent whereas in practice this assumption is not always valid. There is need to critically examine the dependency influence of the CPs on reliability of the t-h passive systems at design stage and in operation to guarantee safety/better performance. In this paper, two multivariate analysis methods (covariance and conditional subjective probability density function) were presented and applied to a simple PSS. The methods followed a generalized procedure for evaluating t-h reliability based on dependency consideration. A passively water-cooled steam generator was used to demonstrate the dependency of the identified key CPs using the methods. The results obtained from the methods are in agreement and justified the need to consider the dependency of CPs in t-h reliability. For dependable t-h reliability, it is advisable to adopt all possible CPs and apply suitable multivariate method in dependency consideration of CPs among other factors.

SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구 (Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL)

  • 류성욱;배황;유효봉;변선준;김우식;신용철;이성재;박현식
    • 대한기계학회논문집B
    • /
    • 제40권3호
    • /
    • pp.165-172
    • /
    • 2016
  • 노심보충탱크(Core Makeup Tank, CMT), 안전주입탱크(SafetyInjection Tank, SIT)와 자동감압계통(Auto Depressurization System, ADS)로 구성된 1 계열의 SMART 피동안전주입계통의 주입특성을 파악하기 위한 소형냉각재상실사고(SBLOCA) 모의에 대한 실험적 연구가 수행되었다. SBLOCA의시험은 0.4 인치 안전주입수 배관파단에 대해 수행되었으며, 정상상태 조건은 실험요건서에 제시된 시험 초기 조건을 만족시키도록 746초 동안 운전되었다. 노심 출력 및 안전주입 유량 등의 경계 조건도 적절히 모의되었으며, 안전주입계통 배관에서의 파단, 히터 트립 및 잔열곡선 인가, 원자로냉각재펌프 관성서행(Coastdown), 급수 중단, CMT 및 SIT의 주입, ADS #1 개방이 SBLOCA 시나리오에 따라 적절히 모의되었다. 노심지지원통 내부의 액체환산수위는 파단 초반에 감소하다가 CMT와 SIT가 주입되면서 서서히 회복되었으며, 피동안전주입계통의 주입유량이 노심 수위를 회복하기에 충분한 것으로 판단할 수 있다.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

  • Bucknor, Matthew;Grabaskas, David;Brunett, Acacia J.;Grelle, Austin
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.360-372
    • /
    • 2017
  • Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.

Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

  • Wu, Xiangcheng;Yan, Changqi;Meng, Zhaoming;Chen, Kailun;Song, Shaochuang;Yang, Zonghao;Yu, Jie
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1321-1329
    • /
    • 2016
  • To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from $450^{\circ}C$ to $700^{\circ}C$ and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.