• Title/Summary/Keyword: Passive loop

Search Result 142, Processing Time 0.022 seconds

Using friction dampers in retrofitting a steel structure with masonry infill panels

  • Zahrai, Seyed Mehdi;Moradi, Alireza;Moradi, Mohammadreza
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.309-325
    • /
    • 2015
  • A convenient procedure for seismic retrofit of existing buildings is to use passive control methods, like using friction dampers in steel frames with bracing systems. In this method, reduction of seismic demand and increase of ductility generally improve seismic performance of the structures. Some of its advantages are development of a stable rectangular hysteresis loop and independence on environmental conditions such as temperature and loading rate. In addition to friction dampers, masonry-infill panels improve the seismic resistance of steel structures by increasing lateral strength and stiffness and reducing story drifts. In this study, the effect of masonry-infill panels on seismic performance of a three-span four-story steel frame with Pall friction dampers is investigated. The results show that friction dampers in the steel frame increase the ductility and decrease the drift (to less than 1%). The infill panels fulfill their function during the imposed drift and increase structural strength. It can be concluded that infill panels together with friction dampers, reduced structural dynamic response. These infill panels dissipated input earthquake energy from 4% to 10%, depending on their thickness.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.

Experimental and numerical investigation on the pressure pulsation in reactor coolant pumps under different inflow conditions

  • Song Huang;Yu Song;Junlian Yin;Rui Xu;Dezhong Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1310-1323
    • /
    • 2023
  • A reactor coolant pump (RCP) is essential for transporting coolant in the primary loop of pressurized water reactors. In the advanced passive reactor, the absence of a long pipeline between the steam generator and RCP serves as a transition section, resulting in a non-uniform flow field at the pump inlet. Therefore, the characteristics of the pump should be investigated under non-uniform flow to determine its influence on the pump. In this study, the pressure pulsation characteristics were examined in the time and frequency domains, and the sources of low-frequency and high-amplitude signals were analyzed using wavelet coherence analysis and numerical simulation. From computational fluid dynamics (CFD) results, non-uniform inflow has a great effect on the flow structures in the pump's inlet. The pressure pulsation in the pump at the rated flow increased by 78-128.7% under the non-uniform inflow condition in comparison with that observed under the uniform inflow condition. Furthermore, a low-frequency signal with a high amplitude was observed, whose energy increased significantly under non-uniform flow. The wavelet coherence and CFD analysis verified that the source of this signal was the low-frequency pulsating vortex under the steam generator.

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach (다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계)

  • Yoon, NamKyung;Yoo, JeongUk;Park, KookJin;Shin, SangJoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.

A Single-Phase Hybrid Active Filter for AC Electrified Railway Systems (교류전기철도 급전시스템의 전기품질 향상을 위한 단상 하이브리드 능동필터)

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Generally, the AC electrified railway systems have the power quality problems that are induced from the harmonic currents and the reactive power. This paper presents a single-phase hybrid active filter adopting a SRF(synchronous-reference-frame) control for improving power quality in the AC electrified railway systems. The single-phase hybrid active filter can compensate the harmonic currents and the reactive power through the proposed SRF control algorithm. The proposed control algorithm can extract the third and fifth harmonics through the MSRF(multiple-synchronous-reference-frames) which is used to apply the three-phase systems. Therefore, the hybrid active filter can compensates only the high-frequency harmonic currents whereas the passive filter compensates the low-frequency harmonic currents. Also, the proposed SRF control algorithm can compensate the reactive power by the closed-loop control. The Validity and the effectiveness of the proposed SRF control method for the hybrid active filter are illustrated through the simulation results.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF

Fresh Produce Container Operated with a Routine of Hypobaric Application, CO2 Injection and Diffusion Tube Opening for Keeping Beneficial Modified Atmosphere

  • Park, Su Yeon;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.53-60
    • /
    • 2020
  • A concept of household container to create and keep the modified atmosphere (MA) beneficial for fresh produce mix was devised and tested under typical chilled storage conditions of 3℃. The container system containing mixed products is initialized by applying weak hypobaric condition (0.9 atm) and subsequently injecting CO2 gas at an appropriate low level (0.03 atm). The passive atmosphere modification by produce respiration is then induced to reach a target until gas diffusion tube of proper dimension starts to open. The design was made to attain quasi-steady state mass balance of O2, CO2 and N2 to maintain the desired MA through the storage. Interrupted opening for taking out or placing some products was to reinitialize the loop of control logic. The developed concept was tested by the container which held commodities of spinach, pak choi, oyster mushroom, peeled onion, strawberry and cut carrot. The target optimum MA of 11% O2 and 10% CO2 (0.11 and 0.10 atm, respectively) was set to avoid injurious range of O2 and CO2 concentrations for any commodities. The developed container system could work to reach and maintain beneficial MA of 0.10-0.12 atm O2 and 0.07-0.10 atm CO2 close to the target during the storage contributing to quality retention of products measured in weight loss, chlorophyll content of spinach, ascorbic acid content of pak choi, color of onion, texture of oyster mushroom, bacterial count of strawberry and carotenoids of carrot. The container system shows potential to improve current preservation practice of fresh produce mix on consumers' level.

High-Temperature Design and Integrity Evaluation of Sodium-Cooled Fast Reactor Decay Heat Exchanger (소듐냉각고속로 붕괴열교환기의 고온 설계 및 건전성 평가)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1251-1259
    • /
    • 2013
  • In this study, high temperature design and creep-fatigue damage evaluation of a decay heat exchanger (DHX) in the decay heat removal systems of a sodium-cooled fast reactor (SFR) have been performed. Detail design and 3D finite element analysis have been conducted for the DHXs to be installed in active and passive decay heat removal systems in Korean Generation IV SFR, and the DHX installed in the STELLA-1(Sodium integral effect test loop for safety simulation and assessment) at KAERI (Korea Atomic Energy Research Institute). Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two Mod.9Cr-1Mo steel heat exchangers according to the elevated temperature design codes of ASME Section III Subsection NH and RCC-MR code. Code comparisons were made based on the creep-fatigue damage evaluation and issues on conservatisms of the design codes were discussed.

An Active Voltage Doubling Rectifier with Unbalanced-Biased Comparators for Piezoelectric Energy Harvesters

  • Liu, Lianxi;Mu, Junchao;Yuan, Wenzhi;Tu, Wei;Zhu, Zhangming;Yang, Yintang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1226-1235
    • /
    • 2016
  • For wearable health monitoring systems, a fundamental problem is the limited space for storing energy, which can be translated into a short operational life. In this paper, a highly efficient active voltage doubling rectifier with a wide input range for micro-piezoelectric energy harvesting systems is proposed. To obtain a higher output voltage, the Dickson charge pump topology is chosen in this design. By replacing the passive diodes with unbalanced-biased comparator-controlled active counterparts, the proposed rectifier minimizes the voltage losses along the conduction path and solves the reverse leakage problem caused by conventional comparator-controlled active diodes. To improve the rectifier input voltage sensitivity and decrease the minimum operational input voltage, two low power common-gate comparators are introduced in the proposed design. To keep the comparator from oscillating, a positive feedback loop formed by the capacitor C is added to it. Based on the SMIC 0.18-μm standard CMOS process, the proposed rectifier is simulated and implemented. The area of the whole chip is 0.91×0.97 mm2, while the rectifier core occupies only 13% of this area. The measured results show that the proposed rectifier can operate properly with input amplitudes ranging from 0.2 to 1.0V and with frequencies ranging from 20 to 3000 Hz. The proposed rectifier can achieve a 92.5% power conversion efficiency (PCE) with input amplitudes equal to 0.6 V at 200 Hz. The voltage conversion efficiency (VCE) is around 93% for input amplitudes greater than 0.3 V and load resistances larger than 20kΩ.

MOving Spread Target signal simulation (능동 표적신호 합성)

  • Seong, Nak-Jin;Kim, Jea-Soo;Lee, Snag-Young;Kim, Kang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.30-37
    • /
    • 1994
  • Since the morden targets are of high speed and getting quiet in both active and passive mode, the necessities of developing advanced SONAR system capable of performing target motion analysis (TMA) and target classification are evident. In order to develop such a system, the scattering mechanism of complex bodies needs to be, some extent, fully understood and modeled. In this paper, MOving Spread Target(MOST) signal simulation model is presented and discussed. The model is based on the highlight distribution method, and simulates pulse elongation of spread target, doppler effect due to kinematics of the target as well as SONAR platform, and distribution target strength of each highlight point (HL) with directivity. The model can be used in developing and evaluating advanced SONAR system through system simulation, and can also be used in the development of target state estimation algorithm.

  • PDF