• Title/Summary/Keyword: Passive elements

Search Result 320, Processing Time 0.027 seconds

Deriving Priorities Based on Combination of Green Remodeling Application Elements in Old Public Libraries (노후 공공도서관의 그린리모델링 적용 요소 조합에 따른 우선순위 도출)

  • Sung Jin Sim;Se Hyeon Lim;Seong Eun Kim;Yong Woo Song
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • The Ministry of Land, Infrastructure, and Transport has been promoting strengthening energy efficiency of old buildings through public green building remodeling projects since 2020. Green remodeling includes both essential and optional construction of passive and active elements. However, there is a lack of integrated designs of passive and active systems and no standards for prioritizing these systems according to the building's age. Therefore, this study examined six public libraries in central region 2 that were expected to be high energy consuming. Remodeling strategy priorities were selected based on potential energy reduction. The libraries were divided into three groups based on their year of construction, completed in the 1980s (Model 1), 1990s (Model 2), and 2000s (Model 3). ECO2-OD, based on ISO 13790 and DINV 18599, was used as the primary energy consumption analysis tool. Simulation results indicated Model 1 and Model 2 benefited most from higher insulation and replacement of mechanical equipment. Model 3 benefited most from upgrading to more energy efficient windows.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Performance Comparison Analysis of Frequency Sensing Shock Absorber and Passive Shock Absorber (주파수 감응식 쇽업소버와 수동형 쇽업소버의 성능비교 분석)

  • Noh, Daekyung;Seo, Wonjin;Yun, Jooseop;Jang, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.380-387
    • /
    • 2015
  • Various forms of passive shock absorber have developed to supplement performance which is poorer than that of active shock absorber. It is called 'Hybrid Conventional Damper (HCD)'. Frequency sensing shock absorber that this study will cover belongs to the HCD. This study aims to demonstrate that performance of frequency sensing shock absorber is superior than that of passive shock absorber. Study process is as follows. Firstly, analysis models for both passive shock absorber and frequency sensing shock absorber are developed to secure reliability. Then, elements which cause difference of ride quality are found out through comparison of hysteresis characteristics. By comparison of frequency characteristic, furthermore, damping principle of frequency sensing shock absorber is understood. Also, it determines if the absorber performs well even though maximum excitation speed is changed. Finally, the study proves that performance of frequency sensing shock absorber is superior than that of passive shock absorber after comparing change of damping power in excitation condition that various frequencies are mixed.

Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West- (역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

An Architectural Study on the Improvement of Energy Efficiency of Public Institution - Focused on Public Office Buildings Remodeling of Passive Design Elements - (공공기관 에너지 효율등급 향상을 위한 적용 설계요소에 관한 연구 - 공공청사 리모델링시 패시브 디자인요소를 중심으로 -)

  • Cho, Jung-Chul;Park, Jae-Seung
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.4
    • /
    • pp.114-120
    • /
    • 2012
  • There are lots of buildings which were built before the Legislation on building energy rating system. Remodeling of the buildings would be required for an improvement of the building energy rating system was enforced by the government. In the Passive Building Design, Elements which will be used for the remodeling are Insulation, Window, External venetian blind, Heat exchanger. The Purpose of this study is to indicate a Method for the improvement of Energy saving by an analysis of Construction Cost, Cost Evaluation, Energy performance Efficiency in applied design elements. In this study, the remodeling of existing public buildings to improve energy efficiency rating was applied to extract the elements of design-specific energy performance, efficiency, and the application of the designs that has been analyzed. The results were as follows: applying the design-specific cost-effective investment that represents the economy (investment efficiency/%) surveyed the average insulation(7.0%), triple glazed windows(10.1%), double glazed windows(12.1%), external shading(24.5%), and Heat(77.2%) were analyzed in order to be more efficient. Analysis of the basis of information on the existing public buildings to improve energy efficiency rating for the remodeling depending on driving conditions at a degree of individual difference. The main effect, however, depending on economic investment, design elements, heat exchangers, external awning, double glazed windows, triple glazed windows, insulation, is recommended as review of the order shall be determined.

  • PDF

Hybrid Structural Control System Design Using Preference-Based Optimization (선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계)

  • Park, Won-Suk;Park, Kwan-Soon;Koh, Hyun-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

Design of PV-AC Module Flyback Inverter with Decoupling and Energy Storage Functions (디커플링과 에너지 저장 기능을 갖는 PV-AC 모듈형 단상 플라이백 인버터 설계)

  • Ha, Eun-Jung;Ryu, Moo-Young;Noh, Yong-Su;Lee, Taeck-Kie;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.103-104
    • /
    • 2014
  • This paper presents design method of 250[W] grid connected PV-AC module with decoupling and energy storage functions to select optimized passive elements for stable operation. The validity of design of optimized elements is verified by simulation results.

  • PDF

Implementation of Passive Elements Applied LTCC Substrate for 24-GHz Frequency Band (24 GHz 대역을 위한 LTCC 기판 적용된 수동소자 구현)

  • Lee, Jiyeon;Ryu, Jongin;Choi, Sehwan;Lee, Jaeyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, by applying LTCC substrate, the library of the passive elements is implemented. And it can be used in 24 GHz circuits. Depending on how to use it to the circuit, it is required large value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 24-GHz. By solving the limit, this paper devised passive elements classified for the DC and the high-frequency domain. The basic structure is suitable for low frequency under 1~2 GHz like DC. The microstrip λ/8 length stub structure is proposed to use for high-frequency like 24-GHz. The open and short stub structure operate as a capacitor and inductor respectively, also they have their impedances. Through their impedances, we can extract the value with the impedance-related equation. In this paper, the proposed passive elements are produced with the permittivity 7.5 LTCC substrate, the basic structure which are available in the DC constituted a library of capacitance of 2.35 to 30.44 pF and inductance of 0.75 to 5.45 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.44 to 2.89 pF and inductance of 0.71 to 1.56 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It will be an alternative to the passive elements that it is possible to integrate with the operation circuit of radar module for the frequency 24-GHz.

Quad-Band Antenna Switch Module with Integrated Passive Device and Transistor Switch (수동 집적 회로 및 트랜지스터 스위치를 통한 4중 대역 안테나 스위치)

  • Jeong, In-Ho;Shin, Won-Chul;Hong, Chang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1287-1293
    • /
    • 2008
  • Antenna switch module(ASM) for quad-band was developed. This module was integrated by RFIPD(RF integrated passive device) and transistor switch instead of LTCC-type device using low pass filters, diodes and passive elements in RF front end module for cellular phone. This module leads to low cost and miniaturization(The area is $5{\times}5\;mm$ and the thickness is 0.8 mm). The insertion loss and the return loss of each band were averagely measured as 1.0 dB(insertion loss), 15.1 dB(GSM/EGSM return loss) and 19 dB(DCS/PCS return loss), respectively.

Combination Effects of Self-Volar Gliding Using a Strap and Wrist Distraction on Pain and Wrist Extension Range of Motion in Subjects with Dorsal Wrist Pain

  • Kim, Ki-Song;Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.286-291
    • /
    • 2019
  • Purpose: This study examined the effects of self-volar gliding combined with a strap and wrist distraction on pain and the active and passive wrist extension range of motion (ROM) in subjects with dorsal wrist pain during partial weight bearing of the hand. Methods: Thirty subjects (14 males and 16 females) with dorsal wrist pain during partial weight bearing through the hand participated in this study. The two different self-volar gliding techniques were performed for each group. Self-volar gliding using a strap (SVGS) and SVGS and wrist distraction (SVGSD) were performed five times for one week for each group. The active and passive ROM of wrist extension and the peak pressure pushed by the hand at pain (PPHP) were measured. An independent t-test was used to compare the improvements of these elements between the two different self-volar gliding techniques. The level of statistical significance was at ${\alpha}=0.05$. Results: The active and passive ROM of wrist extension and PPHP were greater in both self-volar gliding groups after the one week intervention. On the other hand, these parameters were greater in the SVGSD group than in the SVGS group (p<0.05) Conclusion: SVGSD is recommended to improve the active and passive ROM of wrist extension and PPHP in subjects with dorsal wrist pain during partial weight bearing of the hand.