• Title/Summary/Keyword: Passive boost power converter

Search Result 46, Processing Time 0.026 seconds

High-Power-Factor Boost Rectifier with a Passive Lossless Snubber (무손실 수동스너버를 갖는 고역율 부스트 정류기)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.617-625
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is implemented with a MOSFET, is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. These equivalent circuits are analyzed so that the overshoot voltage across the main switch, the snubber current, and the turn-off transition time can be predicted analytically. From these results, the normalized overshoot voltage is reduced to 1 as $_W2T_on$ varies from zero to $\pi$/2, and then it is fIxed at 1 for $_W2T_on$> $\pi$/2. The peak snubber inductor current is directly proportional to the input current. The turn-offtransition time wltoffvaries from 0 to 2.57, depending on $_W2T_on$. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF

Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell (단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터)

  • Lee, Joo-Seung;Hwang, Yun-Seong;Kang, Sung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.

A Buck-Boost Converter-Based Bipolar Pulse Generator

  • Elserougi, Ahmed A.;Massoud, Ahmed M.;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1422-1432
    • /
    • 2017
  • This paper presents a buck-boost converter-based bipolar pulse generator, which is able to generate bipolar exponential pulses across a resistive load. The concept of the proposed approach depends on operating the involved buck-boost converters in discontinuous current conduction mode with high-voltage gain and enhanced efficiency. A full design of the pulse generator and its passive components is presented to ensure generating the pulses with the desired specifications (rise time, pulse width, and pulse magnitude) for a given load resistance and input dc voltage. In case of moderate pulsed output voltages (i.e. few of kV), one module of the presented bipolar generator can be employed. While in case of high-voltage pulsed output, multi-module version can be employed, where each module is fed from an isolated dc source and their outputs are connected in series. Simulation models for the proposed approach are built to elucidate their performance in case of one-module as well as multi-module based generator. Finally, a scaled-down prototype for one-module of buck-boost converter-based bipolar pulse generator is implemented to validate the proposed concept.

Soft Switching Boost Converter using a Single Switch (단일 스위치를 사용한 소프트 스위칭 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jae-Hyeng;Ji, Young-Hyok;Won, Chung-Yuen;Jung, Yong-Chae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.211-219
    • /
    • 2009
  • In this paper, a detailed analysis of zero current or zero voltage switching boost converter using a single switch is described. The proposed topology is capable of decreasing switching loss of IGBT device using soft switching technique. As a results, it can be reduced size and weight of passive elements. Based on the mode analysis, practical design considerations are presented. We confirm the converter topology, principle of operation and simulation results obtained from the PSIM software. The performance of the proposed converter is verified by with 1kW(400V, 2.5A) prototype circuit operated at 30kHz.

A High Efficiency Soft Switching Boost Converter (고효율 소프트 스위칭 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jae-Hyeng;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.28-30
    • /
    • 2008
  • This paper proposes soft switching boost converter operating in zero current switching(ZCS) mode for photovoltaic and fuel cell power generation. The proposed topology is capable of reducing the size, and capability of passive element by using soft switching, and it allows for reduction of IGBT switching losses, for the increased of switching frequency. A detail mode analysis of operating in presented. We present the converter topology, principle of operation and simulation results obtained from the PSIM simulator. The performance of the proposed technique in evaluation on 1kW(380V,2.6A) experimental prototype circuit operating at 30kHz.

  • PDF

Design of a DC-DC Converter for Portable Device (휴대기기용 DC-DC 부스트 컨버터 집적회로설계)

  • Lee, Ja-kyeong;Song, Han-Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • In This Paper, A DC-DC Boost Converter for Portable Device has been Proposed. The Converter Which is Operated with 1 MHz High Switching Frequency is Capable of Reducing Mounting Area of Passive Devices Such as Inductor and Capacitor, Consequently is Suitable for Portable Device. This Boost Converter Consists of a Power Stage and a Control Block and a Protect Block. Proposed DC-DC Boost Converter has been Designed a 0.18 um Magnachip CMOS Process Technology, we Examined Performances of the Fabricated Chip and Compared its Measured Results with SPICE Simulation Data. Simulation Results Show that the Output Voltage is 4.8 V in 3.3 V Input Voltage, Output Current 95 mA Which is Larger than 20~50 mA.

A Non-isolated DC-DC Converter with High Step-up Ratio and Wide ZVS Range (고승압비와 넓은 ZVS 영역을 갖는 비절연 DC-DC 컨버터)

  • Park, Sung-Sik;Choi, Se-Wan;Choi, Woo-Jin;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.315-322
    • /
    • 2009
  • In the conventional boost converter, the actual duty cycle is limited as the output voltage increases due to increased voltage and current stress of the switch and diode and voltage surge caused by diode reverse recovery. In this paper a new non-isolated boost converter suitable for high gain applications is proposed. The proposed converter has voltage gain of around 6 when the duty cycle is 0.5. Since ZVS is achieved under CCM, the proposed converter has wide ZVS range. Also, voltage ratings of switch and diode are the same as one third of output voltage, and ratings of input and output passive components are reduced due to the interleaving. In addition voltage surge caused by diode reverse recovery is negligible due to ZCS turn-off of diodes. Operating principle of the proposed converter is described and validated through theoretical analysis, simulation and experiment.

Full Wave Mode ZVT-PWM DC-DC Converters (전파형 ZVT-PWM DC-DC 컨버터)

  • 김태우;안희욱;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.243-249
    • /
    • 2001
  • This paper proposes a full wave mode ZVT-PWM boost converter. The converter with the auxiliary switch in a full wave mode makes possible soft switching operation of all switches including the auxiliary switch whereas the auxiliary switch is turned off with hard switching in the conventional converter. Therefore, the proposed converter reduces the turn-off switching loss and switching noise of the auxiliary switch without additional passive and/or active elements and high power density system can be realized.

  • PDF

Design of DC-DC Buck Converter Using Micro-processor Control (마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계)

  • Jang, In-Hyeok;Han, Ji-Hun;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.

Simple Technique Reducing Leakage Current for H-Bridge Converter in Transformerless Photovoltaic Generation

  • Kot, Radoslaw;Stynski, Sebastian;Stepien, Krzysztof;Zaleski, Jaroslaw;Malinowski, Mariusz
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.153-162
    • /
    • 2016
  • Given their structural arrangement, photovoltaic (PV) modules exhibit parasitic capacitance, which creates a path for high-frequency current during zero-state switching of the converter in transformerless systems. This current has to be limited to ensure safety and electromagnetic compatibility. Many solutions that can minimize or completely avoid this phenomenon, are available. However, most of these solutions are patented because they rely on specific and often complex converter topologies. This study aims to solve this problem by introducing a solution based on a classic converter topology with an appropriate modulation technique and passive filtering. A 5.5 kW single-phase residential PV system that consists of DC-DC boost stage and DC-AC H-bridge converter is considered. Control schemes for both converter stages are presented. An overview of existing modulation techniques for H-bridge converter is provided, and a modification of hybrid modulation is proposed. A system prototype is built for the experimental verification. As shown in the study, with simple filtering and proper selection of switching states, achieving low leakage current level is possible while maintaining high converter efficiency and required energy quality.