• Title/Summary/Keyword: Passive UHF RFID Tag

Search Result 37, Processing Time 0.019 seconds

RFID Tag 기술

  • 변상기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.32-43
    • /
    • 2004
  • RFID 시스템에서 태그는 리더와 전자기 에너지 교환에 의해 동작을 하며 배터리를 사용하는 active 형 태그와 배터리를 사용하지 않는 passive형 태그로 크게 구분된다. 또한 태그는 자체 회로구조에 의해 harmonic 태그, anharmonic 태그, sequenced amplifier 태그로 나뉜다. Passive 태그에서는 리더의 반송파 backscatter 방식을 이용하여 동작을 하며 active 태그는 자체 발진회로에 의해 태그정보를 송신한다. 태그의 변조방식으로 PSK, FSK, ASK 등을 사용하며 변조방법에 따라 회로 구성과 프로토콜 설계가 달라진다. 또한 리더의 전파 신호를 정류하기 위하여 렉테나(rectenna)가 필요하다. 본 논문에서는 태그의 분류, 동작, 구조 등에 관한 일반적인 내용을 기술하였다. 특히 UHF 대역 이상의 태그 기술 최근 추세가 안테나 부분을 제외하고 CMOS one chip화 하는 수준으로서 900 MHz UHF 대역, 2.45 GHz RFID 칩이 상용화 되어 있다. 칩의 내부구조와 태그의 변조방식에 의거한 동작에 관한 개괄적인 내용을 서술하였다.

A Dual-Path Full Wave Voltage Multiplier for passive RFID Tags (수동형 RFID 태그를 위한 전파 이중 경로 전압 체배기)

  • Cho, Jung-Hyun;Kim, Hak-Su;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • A Dual-Path Voltage Multiplier for passive RFID Tags was proposed and fabricated by using a 0.25um CMOS process with additional steps for schottky diodes. The proposed circuit needs only 4 additional diodes, and the area increment compared to conventional one is negligible in multi-stage voltage multipliers. The simulation and measurement results show that the output power capability of proposed multiplier are about two times larger than the conventional half-wave multiplier.

Fully Printed Chipless RFID Tags Using Dipole Array Structures with Enhanced Reading Ranges

  • Jeon, Dongho;Kim, Min-Sik;Ryu, Seung-Jin;Lee, Dae-Heon;Kim, Jong-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.159-164
    • /
    • 2017
  • This article proposes a design of chipless RFID tag with dipole array structure that is fully printable using conductive ink. The proposed tags encode data based on spectral signature modulations. The reading range is considerably increased (2 m) while maintaining low transmission power (1 mW). Several prototype chipless RFID tags were fabricated and measured in the SHF and UHF bands. The proposed dipole array structure enhances the antenna gain of the passive tags and contributes to overcoming the low conductivity of conductive ink. In order to verify the utility of our proposal, the tags are manufactured on paper, using conductive ink, for the purpose of economic mass production.

A Low-power EEPROM design for UHF RFID tag chip (UHF RFID 태그 칩용 저전력 EEPROM설계)

  • Yi, Won-Jae;Lee, Jae-Hyung;Park, Kyung-Hwan;Lee, Jung-Hwan;Lim, Gyu-Ho;Kang, Hyung-Geun;Ko, Bong-Jin;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.486-495
    • /
    • 2006
  • In this paper, a low-power 1Kb synchronous EEPROM is designed with flash cells for passive UHF RFID tag chips. To make a low-power EEPROM, four techniques are newly proposed. Firstly, dual power supply voltages VDD(1.5V) and VDDP(2.5V), are used. Secondly, CKE signal is used to remove switching current due to clocking of synchronous circuits. Thirdly, a low-speed but low-power sensing scheme using clocked inverters is used instead of the conventional current sensing method. Lastly, the low-voltage, VDD for the reference voltage generator is supplied by using the Voltage-up converter in write cycle. An EEPROM is fabricated with the $0.25{\mu}m$ EEPROM process. Simulation results show that power dissipations are $4.25{\mu}W$ in the read cycle and $25{\mu}W$ in the write cycle, respectively. The layout area is $646.3\times657.68{\mu}m^2$.

A design on low-power and small-area EEPROM for UHF RFID tag chips (UHF RFID 태그 칩용 저전력, 저면적 비동기식 EEPROM 설계)

  • Baek, Seung-Myun;Lee, Jae-Hyung;Song, Sung-Young;Kim, Jong-Hee;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2366-2373
    • /
    • 2007
  • In this paper, a low-power and small-area asynchronous 1 kilobit EEPROM for passive UHF RFID tag chips is designed with $0.18{\mu}m$ EEPROM cells. As small area solutions, command and address buffers are removed since we design asynchronous I/O interface and data output buffer is also removed by using separate I/O. To supply stably high voltages VPP and VPPL used in the cell array from low voltage VDD, Dickson charge pump is designed with schottky diodes instead of a PN junction diodes. On that account, we can decrease the number of stages of the charge pump, which can decrease layout area of charge pump. As a low-power solution, we can reduce write current by using the proposed VPPL power switching circuit which selects each needed voltage at either program or write mode. A test chip of asynchronous 1 kilobit EEPROM is fabricated, and its layout area is $554.8{\times}306.9{\mu}m2$., 11% smaller than its synchronous counterpart.

Modeling and Simulation of New Encoding Schemes for High-Speed UHF RFID Communication

  • Mo, Sang-Hyun;Bae, Ji-Hoon;Park, Chan-Won;Bang, Hyo-Chan;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.241-250
    • /
    • 2015
  • In this paper, we present novel high-speed transmission schemes for high-speed ultra-high frequency (UHF) radio-frequency identification communication. For high-speed communication, tags communicate with a reader using a high-speed Miller (HS-Miller) encoding and multiple antennas, and a reader communicates with tags using extended pulse-interval encoding (E-PIE). E-PIE can provide up to a two-fold faster data rate than conventional pulse-interval encoding. Using HS-Miller encoding and orthogonal multiplexing techniques, tags can achieve a two- to three-fold faster data rate than Miller encoding without degrading the demodulation performance at a reader. To verify the proposed transmission scheme, the MATLAB/Simulink model for high-speed backscatter based on an HS-Miller modulated subcarrier has been designed and simulated. The simulation results show that the proposed transmission scheme can achieve more than a 3 dB higher BER performance in comparison to a Miller modulated subcarrier.

Efficient Mutual Authentication Protocol Suitable to Passive RFID System (수동형 RFID 시스템에 적합한 효율적인 상호 인증 프로토콜 설계)

  • Won, Tae-Youn;Chun, Ji-Young;Park, Choon-Sik;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.63-73
    • /
    • 2008
  • RFID(Radio Frequency IDentification) system is an automated identification system that basically consists of tags and readers and Back-End-Databases. Tags and Readers communicate with each other by RF signal. As a reader can identify many tags in contactless manner using RF signal, RFID system is expected to do a new technology to replace a bar-code system in supply-chain management and payment system and access control and medical record and so on. However, RFID system creates new threats to the security of systems and privacy of individuals, Because tags and readers communicate with each other in insecure channel using RF signal. So many people are trying to study various manners to solve these problems against attacks, But they are difficult to apply to RFID system based on EPCglobal UHF Class-1 Generation-2 tags. Recently, Chien and Chen proposed a mutual Authentication protocol for RFID conforming to EPCglobal UHF Class-1 Generation-2 tags. we discover vulnerabilities of security and inefficiency about their protocol. Therefore, We analyze vulnerabilities of their protocol and propose an efficient mutual authentication protocol that improves security and efficiency.