• Title/Summary/Keyword: Passive Safety

Search Result 399, Processing Time 0.037 seconds

Carex pumila Extract Supresses Mast Cell Activation and IgE-Mediated Allergic Response in Mice (좀보리사초의 IgE 매개성 알레르기 반응 억제 효과 및 기전)

  • Lim, Hannah;Kim, Young Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Allergic diseases have increased rapidly over the past decades, affecting an estimated 20~30% of the population in developed countries. In this study, we investigated whether or not a typical costal sand dune plant Carex pumila (CPE) suppresses the activation of mast cells and IgE-mediated allergic response in vitro and in vivo. As the results, the extract of Carex pumila inhibited antigen-stimulated degranulation in RBL-2H3 cells and Bone marrow-derived mast cells (BMMCs), and IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. CPE also suppressed the production of pro-inflammatory cytokines, TNF-${\alpha}$ and IL-4, in antigen-stimulated mast cells. As its mechanism of action, CPE inhibited the activation of Syk in $Fc{\varepsilon}RI$-mediated signalling pathway, and that of LAT, a downstream adaptor molecule of Syk, in a dose-dependent manner. CPE also suppressed the activation of mitogen-activated protein (MAP) kinases, p38, ERK1/2, JNK, and Akt. Altogether, CPE inhibited mast cell activation and IgE-mediated allergic response by antigen through suppressing the activation of Syk. These results suggest that CPE may be useful for the treatment of allergic diseases.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Risk and Sensitivity Analysis during the Low Power and Shutdown Operation of the 1,500MW Advanced Power Reactor (1,500MW대형원전 정지/저출력 안전성향상을 위한 설계개선안 및 민감도 분석)

  • Moon, Ho Rim;Han, Deok Sung;Kim, Jae Kab;Lee, Sang Won;Lim, Hak Kyu
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • An 1,500MW advanced power reactor required the standard design approval by a Korean regulatory body in 2014. The reactor has been designed to have a 4-train independent safety concept and a passive auxiliary feedwater system (PAFS). The full power risk or core damage frequency (CDF) of 1,500MW advanced power reactor has been reduced more than that of APR1400. However, the risk during the low power and shutdown (LPSD) operation should be reduced because CDF of LPSD is about 4.7 times higher than that of internal full power. The purpose of paper is to analysis design alternatives to reduce risk during the LPSD. This paper suggests design alternatives to reduce risk and presents sensitivity analysis results.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

The Study on Air Force Pilot's Recognition about Cockpit Noise to Foster Aviation Safety by the Use of Active Noise Cancellation (ANC)

  • Kyungtaek Hwang;Gene Lee;Kyungeun Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.26-36
    • /
    • 2023
  • 공군 조종사들이 비행 중에 겪는 지속적이고 강도 높은 소음은 조종사의 생리적(physiological) 및 심리적(psychological) 상태에 부정적인 영향을 미칠 수 있다. 이는 조종사의 비행 능력(performance)에 부정적인 영향을 주게 되며 임무 완수 및 비행 안전을 저해시키는 치명적인 결과로 이어질 수 있다. 대한민국 공군은 조종사들의 청력 보호를 위해 수동 소음 감쇠(Passive Noise Cancellation, PNC) 및 능동 소음 감쇠(Active Noise Cancellation, ANC) 기술이 적용된 헤드셋 및 헬멧을 사용 중이다. 그러나, 소음 저감 기술이 조종사의 청력 보호, 비행 능력, 및 비행 안전에 미치는 효용성에 대한 공군 조종사의 인식은 아직 연구된 바가 없다. 따라서 본 연구는 소음과 관련된 이론적 배경을 고찰하였고, 이후 설문조사를 통해 공군 조종사들(n=154)의 조종석 내 소음 및 소음 감쇠 기술에 대한 인식을 분석하였다. 분석 결과, 능동 소음 감쇠(ANC) 기술이 적용된 헤드셋 및 헬멧의 사용은 소음이 조종사의 생리적 상태에 미치는 영향에는 유의미한 효과가 없지만(p=0.402), 심리적 상태에 미치는 영향은 유의미하게 감소시키는 것으로 나타났다(p<0.001). 따라서, 능동 소음 감쇠(ANC) 기술이 적용된 비행 헤드셋 및 헬멧 사용의 필요성을 강조하였고, 이를 통해 조종사의 비행 능력(performance) 저하 방지 및 비행 안전 증진에 기여하고자 한다.

Evaluation of hydrogen recombination characteristics of a PAR using SPARC PAR experimental results

  • Jongtae Kim;Jaehoon Jung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4382-4394
    • /
    • 2023
  • Passive auto-catalytic recombiners (PARs) are widely used to mitigate a hydrogen hazard. The first step to evaluate the hydrogen safety by PARs is to obtain qualified test data of the PARs for validation of their analytical model. SPARC PAR tests SP8 and SP9 were conducted to evaluate the hydrogen recombination characteristics of a honeycomb-shaped catalyst PAR. To obtain the hydrogen recombination rate from the PAR test data, two methods, Method-1 and Method-2, introduced by the THAI project, were applied. Since a large gradient of hydrogen concentration developed during hydrogen injection can cause a large error in the hydrogen mass obtained by integrating the measured hydrogen concentrations, a gate was installed at the PAR inlet to homogenize hydrogen in the test vessel before the PAR operation in the tests. A computational fluid dynamics (CFD) code with a PAR model was also applied to evaluate the characteristics of the PAR recombination according to the PAR inlet conditions, and the results were compared with those from Method-1 and Method-2. It was confirmed that the recombination rates from Method-1 require a correction factor to be compatible with results from Method-2 and the CFD simulation in the case of the SPARC-PAR tests.

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

Study on Vision based Object Detection Algorithm for Passenger' s Safety in Railway Station (철도 승강장 승객안전을 위한 비전기반 물체 검지 알고리즘 연구)

  • Oh, Seh-Chan;Park, Sung-Hyuk;Jeong, Woo-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.553-558
    • /
    • 2008
  • Advancement in information technology have enabled applying vision sensor to railway, such as CCTV. CCTV has been widely used in railway application, however the CCTV is a passive system that provide limited capability to maintain safety from boarding platform. The station employee should monitor continuously CCTV monitors. Therefore immediate recognition and response to the situation is difficultin emergency situation. Recently, urban transit operators are pursuing applying an unattended station operation system for their cost reduction. Therefore, an intelligent monitoring system is need for passenger's safety in railway. The paper proposes a vision based monitoring system and object detection algorithm for passenger's safety in railway platform. The proposed system automatically detects accident in platform and analyzes level of danger using image processing technology. The system uses stereo vision technology with multi-sensors for minimizing detection error in various railway platform conditions.

  • PDF

Diagnostic Technique for Mold Transformer Windings using Thermal Image (열화상을 이용한 몰드변압기 권선표면 진단)

  • Lim, Y.B.;Jung, J.W.;Jung, J.S.;Ko, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.107-109
    • /
    • 2005
  • Temperature distribution measured to estimate condition of an electrical apparatus is an absolute reference for the apparatus conditions and the difference between the reference temperature and the current one. Because a passive thermography without the external thermal stimulation shows the difference in surface temperature between the object and back ground, the results can apply only to the estimation or the monitoring for the condition of terminal loose and the overload pertaining to the rise in temperature. However, a thermal flow in the active thermography is differently generated by the structure and condition of the surface and subsurface. This paper presents the nondestructive testing using the behavior and deals with the results by heat injection and cooling to the apparatus. The buried discontinuity of subsurface could be detected by these techniques.

  • PDF

Nonlinear analyses of structures with added passive devices

  • Tsai, C.S.;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.517-539
    • /
    • 2004
  • Many types of passive control devices have been recognized as effective tools for improving the seismic resistance of structures. A lot of past research has been carried out to study the response of structures equipped with energy-absorbing devices by assuming that the behavior of the beam-column systems are linearly elastic. However, linear theory may not be adequate for beams and columns during severe earthquakes. This paper presents the results of research on the nonlinear responses of structures with and without added passive devices under earthquakes. A new material model based on the plasticity theory and the two-surface model for beams and columns under six components of forces is proposed to predict the nonlinear behavior of beam-column systems. And a new nonlinear beam element in consideration of shear deformation is developed to analyze the beams and columns of a structure. Numerical results reveal that linear assumption may not be appropriate for beams and columns under seismic loadings, especially for unexpectedly large earthquakes. Also, it may be necessary to adopt nonlinear beam elements in the analysis and design process to assure the safety of structures with or without the control of devices.