• Title/Summary/Keyword: Passive Infrared Sensor

Search Result 35, Processing Time 0.037 seconds

Implementation of a Unmanned Alarm Robot Using PIR Sensor (PIR 센서를 이용한 무인 경보 로봇 구현)

  • Park, Jae-Young;Choi, Hyun-Suk;Kim, Jong Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2289-2290
    • /
    • 2008
  • 본 논문은 행동의 제약을 목적으로 하는 부정적인 의미의 경보, 즉 원하지 않는 침입을 막는 의미에서의 경보를 벗어나, 긍정적인 의미인 알림의 의미로 사용 될 수 있는 무인 경보 로봇의 구현을 목적으로 한다. 이를 위하여 적외선을 발산하는 인체나 동물의 움직임을 감지할 수 있는 PIR(passive infrared sensor)센서를 이용하였다. 이를 이용하기 위해 PIR센서와 무인 경보 로봇의 작동 원리에 대해 설명하고 무인 경보 로봇이 이용 될 수 있는 응용분야에 대해 소개한다.

  • PDF

On-orbit Micro-vibration Isolation Performance Verification for Spaceborne Cryocooler Passive Vibration Isolator Using SMA Mesh Washer (SMA 메쉬 와셔를 적용한 우주용 냉각기 수동형 진동절연기의 궤도 미소진동 절연성능 검증)

  • Kwon, Seong-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • Pulse tube-type spaceborne cryocooler is widely used to cool down the infrared sensor of observation satellites. However, such cryocooler also generates micro-vibration which is the one of main sources to seriously affect the image quality during its on-orbit operation. Therefore, to comply with the mission requirement of high resolution observation satellite, additional technical efforts have been required. In this study, we proposed a spaceborne cryocooler passive vibration isolator using SMA mesh washer, which guarantees the structural safety of both the micro-vibration disturbance source and itself under harsh launch vibration loads without an additional holding mechanism and the micro-vibration isolation performance on orbit environment. To verify the micro-vibration isolation performance of the proposed vibration isolator, we performed the micro-vibration isolation measurement test using the dedicated micro-vibration measurement device proposed in this study.

Reflexive Autonomous Vehicle Control Using Neural Networks (신경회로망을 이용한 반사적인 무인차 제어)

  • Kim, Yoo-Seok;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.888-891
    • /
    • 1991
  • In this paper, we have shown a new approach of neural networks for mobile robot motion control under an indoor refracted environment. The vehicle has two powered wheels and four passive casters which support a free motion. And it also uses sonar sensors, infrared sensors, Internal odometer, and contact sensors. Two experiments were conducted to demonstrate our objectives. The first one is that the vehicle executes a reflexive motor control to maintain a constant distance to the boundary. The second one is that as well as the boundary following, the vehicle makes a block obstacle avoidance during its path. Without prior knowledge of external environment. we have accomplished the tasks by employing a simple, reactive stimulus-response neural network scheme associating sensor data with the vehicle's action.

  • PDF

Production Of IoT-based Detection Anti-Wildlife (IoT기반 야생동물 방범장치 구현)

  • Kwon, Se-Min;Kim, Jun-Hyeon;Lee, Hyeon-Jeong;Kim, Su-In;Ha, Ji-Yeong;Lee, Eun-Ser
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.489-492
    • /
    • 2018
  • 사물인터넷을 기반으로 움직임을 감지하고 사진을 촬영하는 야생동물 방범장치를 구현하였다. 움직임을 감지할 수 있도록 진동과 PIR(Passive Infrared Sensor) 센서를 부착하였고, 촬영한 사진은 웹과 앱에서 확인할 수 있도록 하였다. 본 논문에서는 야생동물 방범장치의 설계 부분인 UML(Unified Modeling Language) 을 활용한 여러 다이어그램과 IoT(Internet of Things) 기반 야생동물 방범장치를 구현한 결과물을 볼 수 있다.

Automatic Flow Control and Network Monitoring of IV Injection (자동 IV 주사 유량 자동 제어 및 네트워크 모니터링)

  • Kim, Jin-Nam;Kwon, Won-Tae;Lee, Kang-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.161-166
    • /
    • 2012
  • Intravenous (IV) injection is widely used to supply Ringer solution directly into a vein in hospital. Generally, a passive injection method has been used, which causes the inconsistent flow rate of fluid and inappropriate control of injection time by a patient. It leads to an unnecessary nurse's overwork and decrement of IV injection's effect. To solve these problems, flow control infusion pumps have been developed. But because of relatively heavy weight and high price, its usage has been limited. In the present study, a new automatic IV injection system is developed. It is installed with a small pressing mechanism driven by a small electric motor to regulate the flow rate by pressing tube. Proportional integral derivative (PID) feedback control algorithm is applied to control the electric motor. The system is smaller in size and uses lower power than the existing commercial product. The newly developed system is also installed with networking capability, which enables monitoring the status of several automatic IV injection system at the same time.

Recent Progress of MIRIS Development

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.4-23.4
    • /
    • 2011
  • MIRIS is the main payload of the Science and Technology Satellite-3 (STSAT-3). which is being developed by KASI for infrared survey observation of the Galactic plane at Paschen alpha wavelength. Wideband filters in I and H band will also be used to observe cosmic infrared background. The MIRIS will perform astronomical observations in the near-infrared wavelengths of 0.9~2 ${\mu}m$ using a 256 ${\times}$ 256 Teledyne PICNIC FPA sensor providing a 3.67 ${\times}$ 3.67 degree field of view with a pixel scale of 51.6 arcsec. The flight model of the MIRIS has been recently developed, The system performance tests have been made in the laboratory, including opto-mechanics test, vibration test, thermal vacuum test and passive cooling test down to 200K, using a thermally controlled vacuum chamber. Several focus tests showed good agreements compared to initial design parameters. Recent efforts are being concentrated to improve the system performances, particularly to reduce readout noise level in electronics. After assembly and integration into the satellite bus, the MIRIS will be launched in 2012.

  • PDF

Development of the Infrared Space Telescope, MIRIS

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Nam, Uk-Won;Moon, Bon-Kon;Park, Sung-Joon;Cha, Sang-Mok;Pyo, Jeong-Hyun;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Lee, Duk-Hang;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

Estimation of Nitrogen Uptake and Biomass of Rice (Oryza sativa L.) Using Ground-based Remote Sensing Techniques (지상 원격측정 센서를 활용한 벼의 생체량과 질소 흡수량 추정)

  • Gong, Hyo-Young;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.779-787
    • /
    • 2011
  • This study was conducted to evaluate the usefulness of ground-based remote sensing for the estimation of rice yield and application rate of N-fertilizer during growing season. Dongjin-1, Korean cultivar of rice was planted on May 30, 2006 and harvested on October 9, 2006. Chlorophyll content and LAI (leaf area index) were measured using Minolta SPAD-502 and AccuPAR model LP-80, respectively. Reflectance indices were determined with passive sensors using sunlight and four types of active sensors using modulated light, respectively. Reflectance indices and growth rate were measured three times from 29 days to 87 days after rice plating and at harvesting day. The result showed that values of growing characteristics and reflectance indices were highly correlated. Growing characteristics to show significant correlation with reflectance indices were in order of followings: fresh weight > N uptake > dry weight > height > No. of tiller > N content. Chlorophyll contents measured by chlorophyll meter (SPAD 502) showed high correlation with nitrogen concentration (r=$0.743^{**}$), although the correlation coefficients between remote sensing data and nitrogen concentration were higher. LAI was highly correlated with dry weight (r=$0.931^{**}$), but relationship between LAI and nitrogen concentration (r=$0.505^*$) was relatively low. The data of CC-passive sensor were negatively correlated with those of the near-infrared. NDVI correlation coefficients found more useful to identify the growth characteristics rather than data from single wavelength. Both passive sensor and active sensor were highly significantly correlated with growth characteristics. Consequently, quantifying the growth characteristics using reflectance indices of ground-based remote sensing could be a useful tool to determine the application rate of N fertilizer non-destructively and in real-time.

Isolating Vibration in Miniature Linear Cryogenic Cooler with Tuned Vibration Absorber (동조질량 진동흡수기를 이용한 미니 저온쿨러의 진동 절연)

  • Kim, Young-Keun;Kim, Hong-Bae;Kim, Eung-Hyun;Kim, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.605-609
    • /
    • 2010
  • In modern surveillance equipment, infrared (IR) sensors are essential for detection and observation. The IR sensor is connected to a miniature cryogenic cooler to maintain the temperature at very low levels, i.e., temperatures as low as 77 K. However, the quality of the image captured by the sensor is degraded by the transmission of vibration disturbances from the cooler. Therefore, to maintain high image quality, the compressor vibration and the force transmitted to the sensor have to be mitigated. For the compressor vibration isolating system, a tuned dynamic vibration absorber, combined with a passive isolator, is proposed. A cryogenic compressor bracket and springs are designed to allow the absorber mass to mitigate the vibration jitter in the axial direction. The system design is analyzed and evaluated in terms of the dynamic suppression of the harmonic force at the operating frequency of the cooler.

Physical Function Monitoring Systems for Community-Dwelling Elderly Living Alone: A Comprehensive Review

  • Jo, Sungbae;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Objective: This study aims to conduct a comprehensive review of monitoring systems to monitor and manage physical function of community-dwelling elderly living alone and suggest future directions of unobtrusive monitoring. Design: Literature review Methods: The importance of health-related monitoring has been emphasized due to the aging population and novel corona virus (COVID-19) outbreak.As the population gets old and because of changes in culture, the number of single-person households among the elderly is expected to continue to increase. Elders are staying home longer and their physical function may decline rapidly,which can be a disturbing factorto successful aging.Therefore, systematic elderly management must be considered. Results: Frequently used technologies to monitor elders at home included red, green, blue (RGB) camera, accelerometer, passive infrared (PIR) sensor, wearable devices, and depth camera. Of them all, considering privacy concerns and easy-to-use features for elders, depth camera possibly can be a technology to be adapted at homes to unobtrusively monitor physical function of elderly living alone.The depth camera has been used to evaluate physical functions during rehabilitation and proven its efficiency. Conclusions: Therefore, physical monitoring system that is unobtrusive should be studied and developed in the future to monitor physical function of community-dwelling elderly living alone for the aging population.