DOI QR코드

DOI QR Code

Estimation of Nitrogen Uptake and Biomass of Rice (Oryza sativa L.) Using Ground-based Remote Sensing Techniques

지상 원격측정 센서를 활용한 벼의 생체량과 질소 흡수량 추정

  • Gong, Hyo-Young (Department of Environmental & Biological Chemistry, Chungbuk National University) ;
  • Kang, Seong-Soo (National Academy of Agricultural Science, RDA) ;
  • Hong, Soon-Dal (Department of Environmental & Biological Chemistry, Chungbuk National University)
  • Received : 2011.09.07
  • Accepted : 2011.10.18
  • Published : 2011.10.31

Abstract

This study was conducted to evaluate the usefulness of ground-based remote sensing for the estimation of rice yield and application rate of N-fertilizer during growing season. Dongjin-1, Korean cultivar of rice was planted on May 30, 2006 and harvested on October 9, 2006. Chlorophyll content and LAI (leaf area index) were measured using Minolta SPAD-502 and AccuPAR model LP-80, respectively. Reflectance indices were determined with passive sensors using sunlight and four types of active sensors using modulated light, respectively. Reflectance indices and growth rate were measured three times from 29 days to 87 days after rice plating and at harvesting day. The result showed that values of growing characteristics and reflectance indices were highly correlated. Growing characteristics to show significant correlation with reflectance indices were in order of followings: fresh weight > N uptake > dry weight > height > No. of tiller > N content. Chlorophyll contents measured by chlorophyll meter (SPAD 502) showed high correlation with nitrogen concentration (r=$0.743^{**}$), although the correlation coefficients between remote sensing data and nitrogen concentration were higher. LAI was highly correlated with dry weight (r=$0.931^{**}$), but relationship between LAI and nitrogen concentration (r=$0.505^*$) was relatively low. The data of CC-passive sensor were negatively correlated with those of the near-infrared. NDVI correlation coefficients found more useful to identify the growth characteristics rather than data from single wavelength. Both passive sensor and active sensor were highly significantly correlated with growth characteristics. Consequently, quantifying the growth characteristics using reflectance indices of ground-based remote sensing could be a useful tool to determine the application rate of N fertilizer non-destructively and in real-time.

본 연구에서는 여러 가지 지상원격측정센서의 반사율 지표와 생산량과의 관계를 평가하여 벼 생육중의 질소시비량 결정을 위한 원격측정센서의 활용가능성 및 최종수량과 의 상관성을 평가하고자 하였다. 벼 품종은 동진 1호였으며 이앙은 2006년 5월 30일에, 수확은 10월 9일에 하였다. 엽록소 측정을 위해 SPAD502를 이용하였고, AccuPAR model LP-80을 이용하여 엽면적지수를 측정하였다. 반사율지표 측정을 위해 태양광을 이용하는 passive 센서를 이용하였고, 변조된 광을 발산하는 자체광원을 가지고 있는 4종류의 active 센서를 이용하였다. 센서측정은 이앙 후 29일째부터 87일째까지 측정하였으며 생육조사는 3차례 하였고 수확기에 수량을 조사하였다. 세 차례의 생육조사 시기의 센서 측정치와 벼 생육특성치간에는 매우 높은 유의적 상관성을 나타냈으며 생육특성치의 상관계수 크기는 전반적으로 생체중 > 질소흡수량 > 건물중 > 키 > 분얼수 > 지상부질소농도의 순이었다. Chlorophyll meter (SPAD 502)는 상대적으로 다른 생육특성 변수 들에 비해 지상부질소농도와 높은 상관 (r=$0.743^{**}$)을 보였지만 원격측정센서보다 낮은 수준이었고, 엽면적측정기(LP-80)는 상대적으로 건물중과 높은 상관 (r=$0.931^{**}$)을 보였으며 지상부 질소농도와의 상관계수 (r=$0.505^*$)는 상대적으로 낮았다. CC-passive센서의 경우 근적외선광의 부의 상관관계를 보였으며 단일파장의 반사율로 평가하는 것보다는 NDVI 등의 반사율 식생지수로 평가하였을 때 상관계수가 증가하였다. Passive 센서와 active 센서 모두 대등하게 고도로 유의성 있는 상관을 보였다. 따라서 지상원격 측정센서의 반사율 지표들을 이용하여 벼 생육특성들을 정량화 하는 것은 벼 생육중의 질소시비량 결정을 위한 비파괴적이고 실시간 도구로 활용 가능할 것으로 판단하였다.

Keywords

References

  1. Al-Abbas, A.H., R. Barr, J.D. Hall, F.L. Crane, and M.F. Baumgardner. 1974. Spectra of normal and nutrient deficient maize leaves. Agron. J. 66:16-20. https://doi.org/10.2134/agronj1974.00021962006600010005x
  2. Bausch, W.C. and H.R. Duke. 1996. Remote sensing of plant nitrogen status in corn. Transaction of the ASAE. 39(5):1869-1875. https://doi.org/10.13031/2013.27665
  3. Bausch, W.C. and K. Diker. 2001. Innovative remote sensing techniques to increase nitrogen use efficiency of corn. Communications in Soil Science and Plant Analysis. 32(7-8):1371-1390. https://doi.org/10.1081/CSS-100104117
  4. Blackmer, T.M., J.S. Schepers, and M.F. Vigil, 1993. Chlorophyll meter readings in corn as affected by plant spacing, Communications in Soil Science and Plant Analysis, 24(17-18):2507-2516. https://doi.org/10.1080/00103629309368971
  5. Blackmer, T.M., J.S. Schepers, and G.E. Varvel. 1994. Light reflectance compared with other nitrogen stress measurement in corn leaves, Agronomy J., 86(6):934-938. https://doi.org/10.2134/agronj1994.00021962008600060002x
  6. Blackmer, T.M. and J.S. Schepers. 1996. Aerial photography to detect nitrogen stress in corn. J. Plant Physiol. 148(3-4):440-444. https://doi.org/10.1016/S0176-1617(96)80277-X
  7. Blackmer, T.M., J.S. Schepers, G.E. Varvel, and G.E. Meyer. 1996a. Analysis of aerial photography for nitrogen stress within corn fields. Agronomy J. 88(5):729-733. https://doi.org/10.2134/agronj1996.00021962008800050008x
  8. Blackmer, T.M., J.S. Schepers, G.E. Varvel, and E.A. Walter-Shea. 1996b. Nitrogen deficiency detection using reflected short wave radiation from irrigated corn canopies, Agronomy J., 88(1):1-5. https://doi.org/10.2134/agronj1996.00021962008800010001x
  9. Gitelson, A.A., M.N. Merzlyak, and H.K. Lichtenthaler. 1996a. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 148:501-508. https://doi.org/10.1016/S0176-1617(96)80285-9
  10. Gitelson, A.A., Y.J. Kaufman, and M.N. Merzlyak. 1996b. Use of green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58:289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
  11. Hong, S.D. and J.J. Kim. 2003. Agricultural application of ground remote sensing. Korean J. Soil Sci. Fert. 36(2):92-103.
  12. Jackson, R.D., C.A. Jones, G. Uehara, and L.T. Santo. 1981. Remote detection of nutrient and water deficiencies in sugarcane under variable cloudiness. Remote Sens. Environ. 11:327-331. https://doi.org/10.1016/0034-4257(81)90029-8
  13. Jeong, H.C. 2006. Effective sensing distance for groundbased remote sensor with different leaf disribution. Master's degree thesis, Chungbuk National University. Cheongju, Korea.
  14. Kang, S.S. 2007. Evaluation for biomass and nitrogen nutrition of crops by refectance indices of ground-based remote sensors. Ph.D. degree thesis, Chungbuk National University. Cheongju, Korea.
  15. Kim, H.G. 2006. Estimation for red pepper (Capsicum annum L.) biomass by reflectance indices with ground-based remote sensor. Master's degree thesis, Chungbuk National University. Cheongju, Korea.
  16. Ma, B.L., L.M. Dwyer, C. Costa, E.R. cober, and M.J. Morrison. 2001. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 93:1227-1234. https://doi.org/10.2134/agronj2001.1227
  17. NIAST. 1999. Fertilizer recommendation for crops. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  18. RDA. 2003. Standard of analysis and survey for agricultural research. Rural Development Administration, Suwon, Korea.
  19. Schepers, J.S., D.D. Francis, M. Vigil, and F.E. Below. 1992. Comparison of corn leaf nitrogen concentration and chlorophyll meter reading. Commun. Soil Sci. Plan. 23(17-20):2173-2187. https://doi.org/10.1080/00103629209368733
  20. Schepers, J.S., T.M. Blackmer, W.W. Wilhelm, and M. Resende. 1996. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. J. Plant Physiol. 148(5):523-529. https://doi.org/10.1016/S0176-1617(96)80071-X
  21. Schepers, J.S. and D.D. Francis. 1998. Precision agriculture-What's in our future, Commun. Soil Sci. Plan. 29:1463-1469. https://doi.org/10.1080/00103629809370043
  22. Shin, Y.H. 2003. Vegetation reflectance characteristics of crops growth stage using remote sensing technology. Master's degree thesis, Chungbuk National University, Cheongju, Korea.
  23. Walburg, G., M.E. Bauer, C.S.T. Daughtry, and T.L. Housley. 1982. Effects of nitrogen nutrition on the growth, yield, and reflectance characteristics of corn canopies. Agron. J. 74:677-683. https://doi.org/10.2134/agronj1982.00021962007400040020x
  24. 박광호 등 28명. 1998. 알기쉬운 벼 재배기술. p68. 향문사. 서울.

Cited by

  1. Estimating the Amount of Nitrogen in Hairy Vetch on Paddy Fields using Unmaned Aerial Vehicle Imagery vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.384