• Title/Summary/Keyword: Passive Infrared Sensor

Search Result 35, Processing Time 0.02 seconds

Development of Energy Saving System Using the Microwave Sensor (마이크로웨이브 센서를 이용한 에너지 절약시스템 개발)

  • Jung, Soon-Won;Lee, Jae-Jin;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.404-407
    • /
    • 2008
  • Because of directly receiving the thing in which a microwave is reflected and comparing the frequency, the microwave sensor with doppler effect completely overcomes the problem of the passive infrared sensor. The microwave sensor with doppler effect well operates about a temperature, the dust, and the peripheral noise because of being dull in the most of ambient conditions. The system developed in this research is the electricity saving detection sensor which it senses the real time action of a man as the microwave sensor and automatically turns on the electric lamp and turns off, minimizes the electrical energy consumption. Since the microwave sensor is not influenced in the light, the dust, and the natural element like the ambient temperature, the effectiveness is considered to be superior to the passive infrared sensor being used currently. There was the energy reduction effect more than about 60% in the performed example which established this system. When this was compared with the construction cost, the cost of establishing payback period was about 1-1.5 year. The microwave sensor with doppler effect developed from this research result is convinced in the future to do enough for the electric energy saving.

Effect of P(VDF/TrFE) Film Thickness on the Characteristics of Pyroelectric Passive Infrared Ray Sensor for Human Body Detection (P(VDF/TrFE) 필름의 두께에 따른 인체 감지형 초전형 PIR 적외선 센서의 특성)

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.114-117
    • /
    • 2011
  • A thick 25 ${\mu}m$ thickness poled P(VDF/TrFE) film pyroelectric infrared ray sensor has been fabricated and then thin 1.6 ${\mu}m$ thickness P(VDF/TrFE) film pyroelectric infrared ray sensor has been fabricated also. These thick and thin P(VDF/TrFE) film pyroelectric infrared ray sensor was mounted in TO-5 housing to detect infrared light of 5.5 ~ 14 ${\mu}m$ wavelength for human body detecting with each other. The noise output voltage of the thick P(VDF/TrFE) film pyroelectric infrared ray sensor were 380 mV and NEP(noise equivalent power) is $3.95{\times}10^{-7}$ W which is the similar value with the commercial pyroelectric infrared ray sensor using ceramic materials as a sensing material. The NEP and specific detectivity $D^*$ of the thin P(VDF/TrFE) film pyroelectric infrared ray sensor were $2.13{\times}10^{-8}$ W and $9.37{\times}106$ cm/W under emission energy of 13 ${\mu}W/cm^2$ respectively. These result caused by lower thermal diffusion coefficient of a thin 1.6 ${\mu}m$ thickness PVDF/TrFE film than the thick 25 ${\mu}m$ thickness poled P(VDF/TrFE) film pyroelectric infrared ray sensor.

Autonomous Indoor Lighting Device Control System Based on Wireless Sensor Network (무선센서네트워크 기반의 자율 실내 조명 제어 시스템)

  • Islam, Tahidul;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, we propose an autonomous Indoor lighting control system in which indoor lighting devices are autonomously controlled such that electricity bills are minimized in our daily life. Our focus is to utilize Passive Infrared (PIR) sensors to detect the presence of human being indoor and automatically to control indoor lighting electric devices. A control algorithm is also devised to control the whole system. We justify the proposed system by demonstrating specific applications in our everyday life. Cost survey and experimental results also demonstrate the efficiency of the proposed system in real life.

Development of on Intelligent Automatic Door System Using Ultrasonic Sensors (초음파센서를 이용한 지능형 자동문시스템 개발)

  • Song, Dong-Hyuk;Chang, Byong-Kun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.31-39
    • /
    • 2009
  • This paper proposes an ultrasonic sensor based intelligent automatic door system which improves the performance of conventional door systems by adding more intelligent functions such that it offers more convenience to passersby and reduces power loss. The conventional automatic door systems employed passive and active infrared sensors for detecting objects and human bodies. But, they have problems such as power loss in door closing, not sensing fast approaching objects, and safety. The proposed automatic door system with ultrasonic sensors prevents unnecessary door closings to save the power and senses fast approaching objects to open the door at proper time, and improves safety. Thus, the proposed system improves the performance of the conventional systems in terms of operation, economy, and safety.

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Detection of Moving Direction using PIR Sensors and Deep Learning Algorithm

  • Woo, Jiyoung;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.11-17
    • /
    • 2019
  • In this paper, we propose a method to recognize the moving direction in the indoor environment by using the sensing system equipped with passive infrared (PIR) sensors and a deep learning algorithm. A PIR sensor generates a signal that can be distinguished according to the direction of movement of the user. A sensing system with four PIR sensors deployed by $45^{\circ}$ increments is developed and installed in the ceiling of the room. The PIR sensor signals from 6 users with 10-time experiments for 8 directions were collected. We extracted the raw data sets and performed experiments varying the number of sensors fed into the deep learning algorithm. The proposed sensing system using deep learning algorithm can recognize the users' moving direction by 99.2 %. In addition, with only one PIR senor, the recognition accuracy reaches 98.4%.

Indoor Air Data Meter and Monitoring System (실내 공기 데이터 측정기 및 모니터링 시스템)

  • Jeon, Sungwoo;Lim, Hyunkeun;Park, Soonmo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.140-145
    • /
    • 2022
  • In an advanced modern society, among air pollutants caused by urban industrialization and public transportation, fine dust flows into indoors from the outdoors. The fine dust meter used indoors provides limited information and measures the pollution level differently, so there is a problem that users cannot monitor and monitor the data they want. To solve this problem, in this paper, indoor air quality data fine dust and ultra-fine dust (PM1.0, PM2.5, PM10), VOC (Volatile Organic Compounds) and PIR (Passive Infrared Sensor) are used to measure fine dust. and a monitoring system were designed and implemented. We propose a fine dust meter and monitoring system that is installed in a designated area to measure fine dust in real time, collects, stores, and visualizes data through App Engine of Google Cloud Platform and provides it to users.

The Fabrication and Characteristics of 0-3 PbTiO$_3$/P(VDF/TrFE) Nanocomposite Thin Films for Passive Pyroelectric Infrared Sensors

  • Kwon, Sung-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.73-76
    • /
    • 2004
  • 0-3 PbTiO$_3$/P(VDF/TrFE) nanocomposite thin films for passive pyroelectric infrared sensors were fabricated by a two-step spin coating technique. 65wt% VDF and 35 wt% TrFE was formed into a P(VDF/TrFE) powder. Nano size PbTiO$_3$ powder was used. 0-3 connectivity of PbTiO$_3$/P(VDF/TrFE) composite film was successfully achieved and observed using SEM photography. The dielectric constant and pyroelectric coefficient were measured and compared with P(VDF/TrFE). A very low dielectric constant (13.48 at 1KHz and sufficiently high pyroelectric coefficient (3.101 nC/$\textrm{cm}^2$ㆍk at 5$0^{\circ}C$) were measured. This nanocomposite can be used for a new pyroelectric infrared sensor to achieve better performance.

Development of LED sensor lights circuit by passive power factor correction circuit (수동 역률 보상회로를 이용한 LED 센서등 회로의 개발)

  • Park, Chong-Yeun;Yoo, Jin-Wan;Lee, Hak-Beom
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, We studied LED(Light Emitted Diode) sensor lights system using PIR(Pyroelectric Infrared Ray) sensor, CdS and MCU(Micro Controller Unit). And applied the valley fill circuit to improve the power factor. We designed the amplifier for each sensor and the LED driver for constant current which is the buck converter. Also, we proposed the algorithm of LED control by each sensors using MCU. Experimental results showed that power factor is 92% with valley fill circuit.

  • PDF

Pyroelectric Characteristics of 0-3 PbTiO3/P(VDF/TrFE) Nanocomposites Thin Films for Infrared Sensing

  • Kwon, Sung-Yeol
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.236-238
    • /
    • 2007
  • [ 0-3PbTiO_3/P$ ](VDF/TrFE) nanocomposites thin films for passive pyroelectric infrared sensor have been fabricated by two-step spin coating technique. 65 wt% VDF and 35 wt% TrFE was formed to a P(VDF/TrFE) poder Nano size $PbTiO_3$ powder was used. 0-3 connectivity of $PbTiO_3$(VDF/TrFE) composites film is achieved and also observed by SEM photography successfully. The dielectric constant, and pyroelectric coefficient measured and compared with P (VDF/TrFE). A very low dielectric constant (13.48 at 1 kHz) and high enough pyroelectric coefficient (3.101 $nC/cm^2$.k at $50^{circ}C$) neasured. This nanocomposites can be used for a new pyroelectric infrared sensor for better performance.