• 제목/요약/키워드: Passive Cooling

검색결과 183건 처리시간 0.022초

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

태양에너지 분야의 최근 연구동향- 2000년$\sim$2002년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Solar Energy Research - A review of Papers Published in the Korean Journal of Solar Energy between 2000 and 2002 -)

  • 유호천;장문석
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.107-119
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Solar Energy between 2000 and 2002 has been done. Focus has been put on current status of research in the aspect of Insolation. Solar Collector and Storage System, Solar Heating and Cooling System, Solar Cell and Lighting System, Active and Passive Solar Building, Heat Transfer in Solar Energy and Natural Energy. The conclusions are as follows. 1) Many studies on Insolation were conducted to optimize the usage of Solar Energy. 2) A review of the recent studies on solar thermal shows that there were many papers on solar collector and storage system. However, studies on the HVAC system using solar energy were relatively insufficient. 3) To produce high efficient solar cell. various experimental and numerical papers were published. However studies on control system, solar cell and lighting were seemed to be insufficient. 4) Studies on using solar energy in passive solar buildings were widely carried out, however, studies based on synthetic analysis of buildings and BIPV were insufficient. 5) Studies on heat transfer were mainly about heat exchanger, performance of heat pipe and multi air conditioner. 6) Studies on energy resources except for solar energy, such as hydraulic power and wind power etc. were very few.

Application of the machine learning technique for the development of a condensation heat transfer model for a passive containment cooling system

  • Lee, Dong Hyun;Yoo, Jee Min;Kim, Hui Yung;Hong, Dong Jin;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2297-2310
    • /
    • 2022
  • A condensation heat transfer model is essential to accurately predict the performance of the passive containment cooling system (PCCS) during an accident in an advanced light water reactor. However, most of existing models tend to predict condensation heat transfer very well for a specific range of thermal-hydraulic conditions. In this study, a new correlation for condensation heat transfer coefficient (HTC) is presented using machine learning technique. To secure sufficient training data, a large number of pseudo data were produced by using ten existing condensation models. Then, a neural network model was developed, consisting of a fully connected layer and a convolutional neural network (CNN) algorithm, DenseNet. Based on the hold-out cross-validation, the neural network was trained and validated against the pseudo data. Thereafter, it was evaluated using the experimental data, which were not used for training. The machine learning model predicted better results than the existing models. It was also confirmed through a parametric study that the machine learning model presents continuous and physical HTCs for various thermal-hydraulic conditions. By reflecting the effects of individual variables obtained from the parametric analysis, a new correlation was proposed. It yielded better results for almost all experimental conditions than the ten existing models.

Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hwang Bae;Hyun-Sik Park
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1125-1139
    • /
    • 2023
  • The system-integrated modular advanced reactor 100 (SMART100), an integral-type pressurized water small modular reactor, is based on a novel design concept for containment cooling and radioactive material reduction; it is known as the containment pressure and radioactivity suppression system (CPRSS). There is a passive cooling system using a condensation with non-condensable gas in the SMART CPRSS. When a design basis accident such as a small break loss of coolant accident (SBLOCA) occurs, the pressurized low containment area (LCA) of the SMART CPRSS leads to steam condensation in an incontainment refuelling water storage tank (IRWST). Additionally, the steam and non-condensable gas mixture passes through the CPRSS heat exchanger (CHX) submerged in the emergency cooldown tank (ECT) that can partially remove the residual heat. When the steam and non-condensable gas mixture passes through the CHX, the non-condensable gas can interrupt the condensation heat transfer in the CHX and it degrades CHX performance. In this study, condensation heat transfer experiments of steam and non-condensable gas mixture in the natural circulation loop were conducted. The pressure, temperature, and effects of the non-condensable gas were investigated according to the constant inlet steam flow rate with non-condensable gas injections in the loop.

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • 제25권4호
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법 (Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles)

  • 김대완;이무연
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2545-2552
    • /
    • 2014
  • 본 연구에서는 전기구동 자동차에 동력원으로 사용되는 고전압 및 고용량 배터리의 고효율 운전을 위하여 배터리 열관리 시스템 기술을 소개하고 이론적 설계 방법에 소개하고 한다. 이를 위하여 전기구동 자동차의 배터리로 많이 사용되는 리튬이온 배터리의 고효율 운전을 위한 발열 모델링을 제시하였고, 열원의 종류에 따른 냉방 및 난방 시스템 설계를 에너지 평형식을 이용하여 부하를 계산하였다. 특히, 리튬이온 배터리의 발열 모델링을 이용하여 충전 및 방전 시 발열 반응열과 혹서기 및 혹한기시 배터리 작동의 최적 온도를 유지하기 위한 냉방과 난방 설계 기술을 제시하였다. 전기구동 자동차 종류에 따라 배터리 사용 비중이 다르기 때문에 효율적인 배터리 열관리를 위하여 계절별 및 작동 모드별 부하에 따른 배터리 열관리 기술을 제안하였다. 또한, 냉방 부하가 가장 큰 여름철 동일 조건에서 외부 공기 온도가 같다고 가정하면 냉방 능력은 수랭식 냉매 방법이 가장 크며 공랭식 방법이 가장 작게 나타난다.

MARS 코드의 수평관내부 응축열전달 모델 평가 및 개선 (Assessment and Improvement of the Horizontal In-Tube Condensation Heat Transfer Model in the MARS code)

  • 이현진;안태환;윤병조;정재준
    • 에너지공학
    • /
    • 제25권1호
    • /
    • pp.56-68
    • /
    • 2016
  • 최근 원자력 발전소의 안전성을 획기적으로 향상시키기 위한 연구가 활발하게 진행되고 있으며 특히 피동냉각계통의 연구개발이 아주 중요하게 부각되고 있다. 피동냉각계통의 열전달 방식으로는 응축열전달 양식이 주로 채택되고 있다. 이와 같은 맥락에서 부산대학교 Ahn & Yun (Ahn 등, 2014)은 새로운 수평관내부 응축 모델을 제시한 바 있다. 본 연구에서는 먼저 Ahn & Yun 이 제시한 수평관 응축 모델을 MARS 코드에 삽입하고 PASCAL 실험데이터를 이용하여 평가하였다. 이 평가결과를 통해 Ahn & Yun 모델의 코드적용에 있어 문제점을 규명하고 새로운 적용방법론을 적용하여 다양한 실험데이터로 다시 평가함으로써 MARS 코드의 향상된 응축 열전달 해석 능력을 확인하였다.

Development of stability maps for flashing-induced instability in a passive containment cooling system for iPOWER

  • Lim, Sang Gyu;No, Hee Cheon;Lee, Sang Won;Kim, Han Gon;Cheon, Jong;Lee, Jae Min;Ohk, Seung Min
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.37-50
    • /
    • 2020
  • A passive containment cooling system (PCCS) has been developed as advanced safety feature for innovative power reactor (iPOWER). Passive systems are inherently less stable than active systems and the PCCS encountered the flashing-induced instability previously identified. The objective of this study is to develop stability maps for flashing-induced instability using MARS (Multi-dimensional Analysis of Reactor Safety) code. Firstly, we conducted a series of sensitivity analysis to see the effects of time step size, nodalization, and alternative MARS user options on the onset of flashing-induced instability. The riser nodalization strongly affects the prediction of flashing in a long riser of the PCCS, while time step size and alternative user options do not. Based on the sensitivity analysis, a standard input and an analysis methodology were set up to develop the stability maps of PCCS. We found out that the calculated equilibrium quality at the exit of the riser as a stability boundary above 5 kW/㎡ was approximately 1.2%, which was in good agreement with Furuya's results. However, in case of a very low heat flux condition, the onset of instability occurred at the lower equilibrium quality. In addition, it was confirmed that inlet throttling reduces the unstable region.

SEPARATE AND INTEGRAL EFFECT TESTS FOR VALIDATION OF COOLING AND OPERATIONAL PERFORMANCE OF THE APR+ PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Kang, Kyoung-Ho;Kim, Seok;Bae, Byoung-Uhn;Cho, Yun-Je;Park, Yu-Sun;Yun, Byoung-Jo
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.597-610
    • /
    • 2012
  • The passive auxiliary feedwater system (PAFS) is one of the advanced safety features adopted in the APR+, which is intended to completely replace the conventional active auxiliary feedwater system. With an aim of validating the cooling and operational performance of PAFS, an experimental program is in progress at KAERI, which is composed of two kinds of tests; the separate effect test and the integral effect test. The separate effect test, PASCAL ($\underline{P}$AF$\underline{S}$ $\underline{C}$ondensing Heat Removal $\underline{A}$ssessment $\underline{L}$oop), is being performed to experimentally investigate the condensation heat transfer and natural convection phenomena in PAFS. A single, nearly-horizontal U-tube, whose dimensions are the same as the prototypic U-tube of the APR+ PAFS, is simulated in the PASCAL test. The PASCAL experimental result showed that the present design of PAFS satisfied the heat removal requirement for cooling down the reactor core during the anticipated accident transients. The integral effect test is in progress to confirm the operational performance of PAFS, coupled with the reactor coolant systems using the ATLAS facility. As the first integral effect test, an FLB (feedwater line break) accident was simulated for the APR+. From the integral effect test result, it could be concluded that the APR+ has the capability of coping with the hypothetical FLB accident by adopting PAFS and proper set-points of its operation.

ASSESSMENT OF A NEW DESIGN FOR A REACTOR CAVITY COOLING SYSTEM IN A VERY HIGH TEMPERATURE GAS-COOLED REACTOR

  • PARK GOON-CHERL;CHO YUN-JE;CHO HYOUNGKYU
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.45-60
    • /
    • 2006
  • Presently, the VHTGR (Very High Temperature Gas-cooled Reactor) is considered the most attractive candidate for a GEN-IV reactor to produce hydrogen, which will be a key resource for future energy production. A new concept for a reactor cavity cooling system (RCCS), a critical safety feature in the VHTGR, is proposed in the present study. The proposed RCCS consists of passive water pool and active air cooling systems. These are employed to overcome the poor cooling capability of the air-cooled RCCS and the complex cavity structures of the water-cooled RCCS. In order to estimate the licensibility of the proposed design, its performance and integrity were tested experimentally with a reduced-scale mock-up facility, as well as with a separate-effect test facility (SET) for the 1/4 water pool of the RCCS-SNU to examine the heat transfer and pressure drop and code capability. This paper presents the test results for SET and validation of MARS-GCR, a system code for the safety analysis of a HTGR. In addition, CFX5.7, a computational fluid dynamics code, was also used for the code-to-code benchmark of MARS-GCR. From the present experimental and numerical studies, the efficacy of MARS-GCR in application to determining the optimal design of complicated systems such as a RCCS and evaluation of their feasibility has been validated.