• Title/Summary/Keyword: Passive Cooling

Search Result 183, Processing Time 0.023 seconds

Influence of fin partitioning of a Rayeigh-Bénard cavity at low Rayleigh numbers

  • Zilic, Adis;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.411-430
    • /
    • 2018
  • This computational study examines the augmentation of classic 2-D Rayleigh-$B{\acute{e}}nard$ convection by the addition of periodically-spaced transverse fins. The fins are attached to the heated base of the cavity and serve to partition the cavity into 'units' with different aspect ratios. The respective impacts upon heat transfer of the fin configuration parameters - including spacing, height, thickness and thermal conductivity - are systematically examined through numerical simulations for a range of laminar Rayleigh numbers (0 < Ra < $2{\times}10^5$) and reported in terms of an average Nusselt number. The selection of the low Rayleigh number regime is linked to likely scenarios within aerospace applications (e.g. avionics cooling) where the cavity length scale and/or gravitational acceleration is small. The net heat transfer augmentation is found to result from a combination of competing fin effects, most of which are hydrodynamic in nature. Heat transfer enhancement of up to $1.2{\times}$ that for a Rayleigh-$B{\acute{e}}nard$ cavity without fins was found to occur under favorable fin configurations. Such configurations are generally characterized by short, thin fins with half-spacings somewhat less than the convection cell diameter from classic Rayleigh-$B{\acute{e}}nard$ theory. In contrast, for unfavorable configurations, it is found that the introduction of fins can result in a significant reduction in the heat transfer performance.

Survey evaluation of thermal boundary condition in the inside and outside of double skin facade

  • Shin, Hyun-Cheol;Jang, Gun-Eik
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.29-35
    • /
    • 2015
  • Purpose: Double skin facade is a representative advantageous passive technology of building skin in the aspect of energy saving and environment improvement, reduces heat loss with buffer space in winter season and enhances indoor air and comfort of residents by activating natural ventilation in mid-season. However, in summer season, temperature increase in the intermediate space due to solar energy from exterior transparent skin could be a potential problem; also, relatively weak buoyancy of air caused by low density difference between double-skin facade could increase cooling load as air of intermediate space in high temperature hangs. However, proof data is insufficient to objectify such phenomenon. Method: In this study, researchers surveyed air temperature of intermediate space and airflow and diagnosed its cause targeting on applied multistory facade in the building which gives thermal uncomfort to residents. Also, the researchers produced Solar-air heat transfer coefficient meter, measured thermal boundary condition of double-skin facade, and presented the result of measurement as an objectified verification material regarding overheating phenomenon in the intermediate space of double-skin facade in summer season. Result: Inefficient condition was verified that total heat increases and overheating due to insufficient natural ventilation in multistory facade. In addition, logic behind preceding research was objectified and verified regarding high temperature phenomenon in the intermediate space which could increase cooling load in summer season.

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

Experimental Study on the Characteristics of Heat Exchanger of 1 kW PEMFC System for UAV (무인항공기용 고분자전해질형 연료전지 시스템의 열교환기 성능 특성 연구)

  • Kang, Sang-Gyu;Kim, Byung-Jun;Kim, Han-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.819-826
    • /
    • 2011
  • The proton exchange membrane fuel cell (PEMFC) is regarded as the most promising alternative power sources for unmanned aerial vehicle (UAV) due to its high energy density and silent operation. Since there are many load changes during UAV flight, thermal management is one of the important factor for the performance of PEMFC. In order to reduce the UAV weight for the stable operation of UAV, thermal management system (TMS) studied in this work does not use the fan but use the air flowing into UAV by UAV flight. In order to develop the passive type heat exchanger (HEX) for 1kW PEMFC, four types of HEXs are fabricated and their cooling performances are compared. The parametric study on the cooling performance of HEXs has performed with the variation of operating parameters such as mass flow rates and inlet temperature of air and coolant. Type 4 has the best performance in every case. This study can be helpful to achieve the optimal design of HEX for PEMFC powered UAV.

A Study on the Heating and Cooling Energy Load Analysis of the KNU Plant Factory (KNU 식물공장의 냉난방 에너지 부하 해석에 관한 연구)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1419-1426
    • /
    • 2012
  • The heating and cooling energy load of the KNU plant factory was analyzed using the DesignBuilder. Indoor temperature set-point, LED supplemental lighting schedule, LED heat gain, and type of double skin window were selected as simulation parameters. For the cases without LED supplemental lighting, the proper growth temperature of lettuce $20^{\circ}C$ was selected as indoor temperature set-point together with $15^{\circ}C$ and $25^{\circ}C$. The annual heating and cooling loads which are required to maintain a constant indoor temperature were calculated for all the given temperatures. The cooling load was highest for $15^{\circ}C$ and heating load was highest for $25^{\circ}C$. For the cases with LED supplemental lighting, the heating load was decreased and the cooling load was 6 times higher than the case without LED. In addition, night time lighting schedule gave better result as compared to day time lighting schedule. To investigate the effect of window type on annual energy load, 5 different double skin window types were selected. As the U-value of double skin window decreases, the heating load decreases and the cooling load increases. To optimize the total energy consumption in the plant factory, it is required to set a proper indoor temperature for the selected plantation crop, to select a suitable window type depending on LED heat gain, and to apply passive and active energy saving technology.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.