DOI QR코드

DOI QR Code

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Meng, Zhaoming (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Yan, Changqi (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Chen, Kailun (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
  • Received : 2017.01.18
  • Accepted : 2017.07.21
  • Published : 2017.12.25

Abstract

In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

Keywords

References

  1. D.E. Holcomb, S.M. Cetiner, An Overview of Liquidefluorideesalt Heat Transport Systems, ORNL Report no. ORNL/TM-2010/156, ORNL, Oak Ridge, TN, 2010.
  2. R.C. Robertson, MSRE design and Operations Report: Part I. Description of Reactor Design, Oak Ridge National Laboratory Reports, 1965.
  3. P.N. Haubenreich, J.R. Engel, B.E. Prince, H.C. Claiborne, MSRE design and Operations Report: Part III. Nuclear Analysis, Technical Report ORNL-TM-730, ORNL, Oak Ridge, TN, 1964.
  4. R. Tallackson, MSRE Design and Operations Report: Part IIA. Nuclear and Process Instrumentation, ORNL-TM-729, 1968.
  5. D.E. Holcomb, G.F. Flanagan, G.T. Mays, W.D. Pointer, K.R. Robb, G.L. Yoder Jr., Fluoride Salt-cooled High-temperature Reactor Technology Development and Demonstration Roadmap, Office of Scientific and Technical Information Technical Reports, 2013.
  6. T. Ishiguro, W.F.G. van Rooijen, Y. Shimazu, H. Mochizuki, Design of a passive residual heat removal system for the FUJI-233Um molten salt reactor system, Ann. Nucl. Energy 64 (2014) 398-407. https://doi.org/10.1016/j.anucene.2013.08.037
  7. V. Ignatiev, O. Feynberg, I. Gnidoi, A. Merzlyakov, V. Smirnov, A. Surenkov, I. Tretiakov, R. Zakirov, V. Afonichkin, A. Bovet, V. Subbotin, A. Panov, A. Toropov, A. Zherebtsov, Progress in development of Li, Be, Na/F Molten Salt Actinide Recycler and Transmuter Concept, Proceedings of the ICAPP, 2007. Nice, France.
  8. E. Merle-Lucotte, D. Heuer, M. Allibert, M. Brovchenko, N. Capellan, V. Ghetta, Launching the thorium fuel cycle with the molten salt fast reactor, in: International Congress on Advances in Nuclear Power Plants, 2011.
  9. T. Iwamura, Y. Murao, F. Araya, K. Okumura, A concept and safety characteristics of JAERI passive safety reactor (JPSR), Prog. Nucl. Energy 29 (1995) 397-404. https://doi.org/10.1016/0149-1970(95)00068-U
  10. P.E. Juhn, J. Kupitz, J. Cleveland, B. Cho, R.B. Lyon, IAEA activities on passive safety systems and overview of international development, Nucl. Eng. Des. 201 (2000) 41-59. https://doi.org/10.1016/S0029-5493(00)00260-0
  11. Y.P. Zhang, S.Z. Qiu, G.H. Su, W.X. Tian, Analysis of safety margin of in-vessel retention for AP1000, Nucl. Eng. Des. 240 (2010) 2023-2033. https://doi.org/10.1016/j.nucengdes.2010.04.020
  12. C. Wang, Z. Guo, D. Zhang, S. Qiu, W. Tian, Y. Wu, G. Su, Transient behavior of the sodiumepotassium alloy heat pipe in passive residual heat removal system of molten salt reactor, Prog. Nucl. Energy 68 (2013) 142-152. https://doi.org/10.1016/j.pnucene.2013.07.001
  13. J.A. Boure, A.E. Bergles, L.S. Tong, Review of two-phase flow instability, Nucl. Eng. Des. 25 (1973) 165-192. https://doi.org/10.1016/0029-5493(73)90043-5
  14. S. Kakac, B. Bon, A review of two-phase flow dynamic instabilities in tube boiling systems, Int. J. Heat Mass Transfer 51 (2008) 399-433. https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.026
  15. G.D. Prasad, M. Pandey, M.S. Kalra, Review of research on flow instabilities in natural circulation boiling systems, Prog. Nucl. Energy 49 (2007) 429-451. https://doi.org/10.1016/j.pnucene.2007.06.002
  16. S.Y. Jiang, X.X. Wu, Y.J. Zhang, Experimental study of two-phase flow oscillation in natural circulation, Nucl. Sci. Eng. 135 (2000) 177-189. https://doi.org/10.13182/NSE00-A2133
  17. S.Y. Jiang, M.S. Yao, J.H. Bo, S.R. Wu, Experimental simulation study on start-up of the 5 MW nuclear heating reactor, Nucl. Eng. Des. 158 (1995) 111-123. https://doi.org/10.1016/0029-5493(95)01020-I
  18. M. Furuya, F. Inada, T.H.J.J. van der Hagen, Flashing-induced density wave oscillations in a natural circulation BWRdmechanism of instability and stability map, Nucl. Eng. Des. 235 (2005) 1557-1569. https://doi.org/10.1016/j.nucengdes.2005.01.006
  19. K. Tanimoto, M. Ishii, S.Y. Lee, Examination of transient characteristics of twophase natural circulation within a Freon-113 boiling/condensation loop, Nucl. Eng. Des. 183 (1998) 77-95. https://doi.org/10.1016/S0029-5493(98)00168-X
  20. S. Shi, T. Hibiki, M. Ishii, Startup instability in natural circulation driven nuclear reactors, Prog. Nucl. Energy 90 (2016) 140-150. https://doi.org/10.1016/j.pnucene.2016.03.016
  21. J. Chen, S. Yang, S. Liao, X. Cao, Experimental investigation of effective parameters on geyser periodicity in a vertical heated system, Exp. Thermal Fluid Sci. 68 (2015) 163-176. https://doi.org/10.1016/j.expthermflusci.2015.04.005
  22. L.L. Tong, G. Shao, K. Yuan, X.W. Cao, An experimental study on geysering phenomena induced by buoyancy in a heating system, Ann. Nucl. Energy 63 (2014) 129-137. https://doi.org/10.1016/j.anucene.2013.07.011
  23. R.N. Duffey, U.S. Rohatgi, Physical interpretation of geysering phenomena and periodic boiling instability at low flows, in: ASME/JSME International Conference on Nuclear Engineering, New Orleans, LA, 1996.
  24. O.R.N. Laboratory, Molten-Salt Reactor Program Semiannual Progress Report, July 31, 1963.
  25. J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process. Des. 5 (1966) 322-329. https://doi.org/10.1021/i260019a023
  26. J. Yan, Q. Bi, Z. Liu, G. Zhu, L. Cai, Subcooled flow boiling heat transfer of water in a circular tube under high heat fluxes and high mass fluxes, Fusion Eng. Des. 100 (2015) 406-418. https://doi.org/10.1016/j.fusengdes.2015.07.007
  27. L. Wu, Y. Liu, H. Jia, J. Wang, Innovative flow-resistance performance in the single-phase natural circulation loop and relevant experiment verification, Int. J. Heat Mass Transfer 107 (2017) 66-73. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.043
  28. X. Hou, Z. Sun, J. Su, G. Fan, An investigation on flashing instability induced water hammer in an open natural circulation system, Prog. Nucl. Energy 93 (2016) 418-430. https://doi.org/10.1016/j.pnucene.2016.09.015
  29. S. Cantor, J.W. Cooke, A.S. Dworkin, G.B. Robbins, R.E. Thoma, G.M. Watson, Physical Properties of Molten-salt Reactor Fuel, Coolant and Flush Salts, ORNLTM-2316, Oak Ridge National Laboratory, 1968.
  30. S.S. Mehendale, A.M. Jacobi, R.K. Shah, Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design, Appl. Mech. Rev. 53 (2000) 175-193. https://doi.org/10.1115/1.3097347
  31. S.G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Exp. Thermal Fluid Sci. 26 (2002) 389-407. https://doi.org/10.1016/S0894-1777(02)00150-4
  32. L. Sun, L. Sun, C. Yan, D. Fa, Conceptual design and analysis of a passive residual heat removal system for a 10MW molten salt reactor experiment, Prog. Nucl. Energy 70 (2014) 149-158. https://doi.org/10.1016/j.pnucene.2013.09.013
  33. S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1953) 3-8.

Cited by

  1. Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle vol.53, pp.2, 2021, https://doi.org/10.1016/j.net.2020.07.007