• 제목/요약/키워드: Passive/Active System

검색결과 755건 처리시간 0.039초

능동형 횡동요 감쇠장치의 성능에 관한 연구 (A Study on the Performance of Active Anti-Rolling Tank Stabilizer System)

  • 최찬문;안장영;이창헌
    • 수산해양기술연구
    • /
    • 제40권2호
    • /
    • pp.138-143
    • /
    • 2004
  • 제주대학교 실습선 아라호에 정착된 능동형 횡동요 감쇠장치의 성능에 관해 연구하기 위하여 33$^{\circ}$00‘.44”N, 125$^{\circ}$59’.88 ”E 위치에서 선박을 정지한 후, 횡동요 감쇠장치를 정지 (Passive A.R.T), 작동 (Active A.R.T)을 했을 때 경사계에 의한 횡동요각 및 종동요각, 풍속계에 의한 풍속의 변화와 그리고 선박이 항해 중에 감쇠장치의 작동을 정지(Passive A.R.T), 작동(Active A.R.T) 했을 때 의 능동형 횡동요 감쇠장치의 성능을 분석한 결과에 대해 요약하면 다음과 같다. 1. 선박이 정지했을 때 횡동요 감쇠장치를 정지, 작동한 경우 횡동요각의 평균진폭 (Average Amplitude of Roll) 은 각각 8.30$^{\circ}$, 4.37$^{\circ}$, 횡동요각의 유의진폭(Significant Amplitude of Roll $_{{\pi}{1/3}}$)은 각각 10.10$^{\circ}$, 5.30$^{\circ}$으로 나타났다. 2. 선박이 항해 중 일 때에는 횡동요각의 평균진폭 (Average Amplitude of Roll)은 각각 5.01$^{\circ}$, 4.36$^{\circ}$, 횡동요각의 유의진폭 (Significant Amplitude of Roll$^{\circ}$) 은 각각 5.50$^{\circ}$, 5.10$^{\circ}$으로 각각 나타났다. 3. 횡동요 감쇠장치는 선박이 정치했을 때에는 47.5%, 선박이 운항 했을 때는 12.7% 정도의 감쇠 효율을 보여서 정지했을 때 그 효율이 높은 것으로 나타났다. 4. 횡동요 감쇠 장치는 종동요(Pitching)에 대해서는 거의 영향을 미치지 않았다.

MR 댐퍼가 적용된 철도차량 이차현가장치의 H 제어 (H Control of Secondary Suspension in Railway Vehicles Equipped with a MR Damper)

  • 신유정;유원희;허현무;박준혁
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1051-1059
    • /
    • 2013
  • In general, lateral ride comfort of railway vehicle is mainly influenced by a secondary suspension placed between the bogie and carbody. Higher operating speeds of train results in increased vibration of carbody, which has a negative impact related to the ride comfort. To solve this problem, researches to replace the conventional passive suspension with (semi)active technology in the secondary suspension of a railway vehicle have been carried out. The semi-active suspension using the magneto-rheological damper is relatively simpler system and has advantage in maintenance compared to the hydraulic type semi-active damper. This study was performed to reduce lateral vibration acceleration of carbody related to ride comfort of railway vehicles with a semi-active suspension system. The numerical analysis was conducted by replacing passive lateral damper with semi-active MR damper, and robust control with the MR damper was applied to the 1/5 scaled railway vehicle model.

Equivalent damping of a structure with vibration control devices subjected to wind loads

  • Hwang, Jae-Seung;Kim, Jinkoo;Lee, Sang-Hyun;Min, Kyung-Won
    • Wind and Structures
    • /
    • 제6권4호
    • /
    • pp.249-262
    • /
    • 2003
  • The purpose of this study is to propose a procedure for evaluating quantitatively the increase of the equivalent damping ratio of a structure with passive/active vibration control systems subjected to a stationary wind load. A Lyapunov function governing the response of a structure and its differential equation are formulated first. Then the state-space equation of the structure coupled with the secondary damping system is solved. The results are substituted into the differential equation of the Lyapunov function and its derivative. The equivalent damping ratios are obtained from the Lyapunov function of the combined system and its derivative, and are used to assess the control effect of various damping devices quantitatively. The accuracy of the proposed procedure is confirmed by applying it to a structure with nonlinear as well as linear passive/active control systems.

다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제 (Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits)

  • 문성환;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF

Damage index sensor for smart structures

  • Mita, Akira;Takahira, Shinpei
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.331-346
    • /
    • 2004
  • A new sensor system is proposed for measuring damage indexes. The damage index is a physical value that is well correlated to a critical damage in a device or a structure. The mechanism proposed here utilizes elastic buckling of a thin wire and does not require any external power supply for memorizing the index. The mechanisms to detect peak strain, peak displacement, peak acceleration and cumulative deformation as examples of damage indexes are presented. Furthermore, passive and active wireless data retrieval mechanisms using electromagnetic induction are proposed. The passive wireless system is achieved by forming a closed LC circuit to oscillate at its natural frequency. The active wireless sensor can transmit the data much further than the passive system at the sacrifice of slightly complicated electric circuit for the sensor. For wireless data retrieval, no wire is needed for the sensor to supply electrical power. For the active system, electrical power is supplied to the sensor by radio waves emitted from the retrieval system. Thus, external power supply is only needed for the retrieval system when the retrieval becomes necessary. Theoretical and experimental studies to show excellent performance of the proposed sensor are presented. Finally, a prototype damage index sensor installed into a 7 storey base-isolated building is explained.

에너지 절감형 자동차용 현가장치에 관한 연구 (A Study on the Automotive Suspension System for Energy Efficiency)

  • 소상균
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.100-107
    • /
    • 2001
  • The main goals of the automotive suspension systems are to isolate roadway unevenness from the tire and to improve vehicle stability. To overcome the performance limitation of the passive systems the active systems which completely replace the passive spring and damper elements with a force generating actuator has been studied. However, application of the system has been limited because it has required a significant amount of power. Recently, alternative systems which retain passive elements but include active elements have been developed to reduce the power required. Those systems are mostly focused on the control system which compresses the spring-damper directly. In this study, a new type of power efficient control system which makes the spring-damper unit slide in side way is studied. After constructing the control system including dynamic modeling and motion control, two types of alternative control systems are compared in view of power consumption and dynamic attitudes such as roll responses as well as heave responses. Also, a half car bond graph model is developed to show clearly the significant differences in performances between two control systems.

  • PDF

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

  • Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.663-678
    • /
    • 2020
  • Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

Intelligent hybrid controlled structures with soil-structure interaction

  • Zhang, X.Z.;Cheng, F.Y.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.573-591
    • /
    • 2004
  • A hybrid control system is presented for seismic-resistant building structures with and without soil-structure interaction (SSI). The hybrid control is a damper-actuator-bracing control system composed of passive and active controllers. An intelligent algorithm is developed for the hybrid system, in which the passive damper is designed for minor and moderate earthquakes and the active control is designed to activate when the structural response is greater than a given threshold quantity. Thus, the external energy for active controller can be optimally utilized. In the control of a multistory building, the controller placement is determined by evaluating the optimal location index (OLI) calculated from six earthquake sources. In the study, the soil-structure interaction is considered both in frequency domain and time domain analyses. It is found that the interaction can significantly affect the control effectiveness. In the hybrid control algorithm with intelligent strategy, the working stages of passive and active controllers can be different for a building with and without considering SSI. Thus SSI is essential to be included in predicting the response history of a controlled structure.

PMSG 기반 풍력발전용 계통연계 인버터의 신뢰성 향상을 위한 새로운 하이브리드 단독운전 방지기법 (A Novel Hybrid Anti-islanding Method to Improve Reliability of Utility Interactive Inverter for a PMSG-based Wind Power Generation System)

  • 강성욱;김경화
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.27-36
    • /
    • 2013
  • Islanding in a gird connected inverter of wind power generation system may influence a bad effect on equipments or yield safety hazards on grid so it should be detected rapidly and exactly. A passive method to detect islanding is comparatively simpler than an active method but suffers from non detection zone (NDZ). On the other hand, the active method can significantly reduce NDZ by injecting a disturbance into inverter output. To improve the reliability of islanding detection, this paper proposes a hybrid anti-islanding detection method combining the conventional passive method as well as the active method based on novel harmonic injection method using fourier transform. The proposed scheme is fast to detect islanding when NDZ does not exist because it has the nature of passive method. Under NDZ, the active method can detect occurrence of islanding reliably. The effectiveness and validity of the proposed scheme is proved through comparative simulations.

DEVCS 모델을 사용한 심근 활성화과정의 시뮬레이션 (A Simulation of the Myocardium Activation Process using the Discrete Event Cell Space Model)

  • 김광년;정동근;김기련;최병철;이정태;전계록
    • 한국시뮬레이션학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-16
    • /
    • 2004
  • The modelling and simulation of the activation process for the heart system is meaningful to understand special excitatory and conductive system in the heart and to study cardiac functions because the heart activation conducts through this system. This thesis proposes two dimensional cellular automaton(CA) model for the activation process of the myocardium and conducted simulation by means of discrete time and discrete event algorithm. In the model, cells are classified into anatomically similar characteristic parts of the heart and each of cells has a set of cells with preassigned properties. Each cell in this model has state variables to represent the state of the cell and has some state transition rules to change values of state variables executed by state transition function. The state transition rule is simple as follows. First, the myocardium cell at rest stay in passive state. Second, if any one of neighborhood cell in the myocardium cell is active state then the state is change from passive to active state. Third, if cell's state is an active then automatically go to the refractory state after activation phase. Four, if cell's state is refractory then automatically go to the passive state after refractory phase. These state transition is processed repeatedly in all cells through the termination of simulation.

  • PDF