• 제목/요약/키워드: Passivation Material

검색결과 233건 처리시간 0.022초

Contact Resistance and Leakage Current of GaN Devices with Annealed Ti/Al/Mo/Au Ohmic Contacts

  • Ha, Min-Woo;Choi, Kangmin;Jo, Yoo Jin;Jin, Hyun Soo;Park, Tae Joo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.179-184
    • /
    • 2016
  • In recent years, the on-resistance, power loss and cell density of Si power devices have not exhibited significant improvements, and performance is approaching the material limits. GaN is considered an attractive material for future high-power applications because of the wide band-gap, large breakdown field, high electron mobility, high switching speed and low on-resistance. Here we report on the Ohmic contact resistance and reverse-bias characteristics of AlGaN/GaN Schottky barrier diodes with and without annealing. Annealing in oxygen at $500^{\circ}C$ resulted in an increase in the breakdown voltage from 641 to 1,172 V for devices with an anode-cathode separation of $20{\mu}m$. However, these annealing conditions also resulted in an increase in the contact resistance of $0.183{\Omega}-mm$, which is attributed to oxidation of the metal contacts. Auger electron spectroscopy revealed diffusion of oxygen and Au into the AlGaN and GaN layers following annealing. The improved reverse-bias characteristics following annealing in oxygen are attributed to passivation of dangling bonds and plasma damage due to interactions between oxygen and GaN/AlGaN. Thermal annealing is therefore useful during the fabrication of high-voltage GaN devices, but the effects on the Ohmic contact resistance should be considered.

Bottom Gate IGZO 박막트랜지스터를 이용한 투명 AMOLED 패널 제작 (AMOLED Panel Using Transparent Bottom Gate IGZO TFT)

  • 조두희;양신혁;변춘원;신재헌;이정익;박은숙;권오상;황치선;추혜용;조경익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.39-40
    • /
    • 2008
  • We have examined post-annealing and passivation for the transparent bottom gate IGZO TFT having an inverse co-planar structure. The oxygen-vacuum two step annealing enhanced the field effect mobility up to 18 $cm^2$/Vsandthesub-threshold swing down to 0.2V/dec. However, the hysterysis and the bias stability problems could not be solved just by post-annealing. Thus, we have passivated the bottom gate IGZO TFTs with organic and inorganic materials. $Ga_2O_3$, $Al_2O_3$, $SiO_2$ and some polymer materials were effective materials for passivations. The hysterysis and the stability of the TFTs were remarkably improved by the passivations. We have manufactured the AMOLED panel with the transparent bottom gate IGZO TFT array successfully.

  • PDF

대향타겟식 스퍼터링 장치의 공정 조건에 따른 SiO2 가스 차단막의 특성 (Characteristics of SiO2 Gas Barrier Films as a Function of Process Conditions in Facing Target Sputtering (FTS) System)

  • 배강;왕태현;손선영;김화민;홍재석
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.595-601
    • /
    • 2009
  • For the silicon oxide $(SiO_x)$ films prepared by using the facing target sputtering (FTS) apparatus that was manufactured to enhance the preciseness of the fabricated thin-film and sputtering yield rate by forming a higher-density plasma in the electrical discharge space for using it as a thin-film passivation system for flexible organic light emitting devices (FOLEDs). The deposition characteristics were investigated under various process conditions, such as array of the cathode magnets, oxygen concentration$(O_2/Ar+O_2)$ introduced during deposition, and variations of distance between two targets and working pressure. We report that the optimum conditions for our FTS apparatus for the deposition of the $SiO_x$ films are as follows: $d_{TS}\;and\;d_{TT}$ are 90mm and 120mm, respectively and the maximum deposition rate is obtained under a gas pressure of 2 mTorr with an oxygen concentration of 3.3%. Under this optimum conditions, it was found that the $SiO_x$ film was grown with a very high deposition rate of $250{\AA}$/min by rf-power of $4.4W/cm^2$, which was significantly enhanced as compared with a deposition rate (${\sim}55{\AA})$/min) of the conventional sputtering system. We also reported that the FTS system is a suitable method for the high speed and the low temperature deposition, the plasma free deposition, and the mass-production.

새로운 방식의 유기박막트랜지스터 패시베이션 기술 (The novel encapsulation method for organic thin-film transistor)

  • 이정헌;김성현;김기현;임상철;조은나리;장진;정태형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.177-180
    • /
    • 2004
  • In this study, we report a novel encapsulation method for longevity of an organic thin-film transistor (OTFT) using pentaceneby means of an adhesive multiplayerincluded Al film. For encapsulation of OTFTs, the Al film adhered onto the OTFT in a dry nitrogen atmosphere using a proper adhesive. A lifetime, which was defined as the time necessary to reduce mobility to 2% of initial mobility value, was observed from the typical $I_{D-VD}$ characteristics of the field-effect transistor (FET). The initial field effect mobility ${\mu}$ was measured to be $2.0{\times}10^{-1}\;cm^2/Vs$. The characterization was maintained for long times in air. No substantial degeneration occurred. The performance and the stability are probably due to the encapsulation effect.

  • PDF

니켈/철 축전지의 철전극에 관한 연구(I) -철전극의 고이용률화- (A Study on Iron Electrode of Ni/Fe Battery(I) -High Utilization of Iron Electrode-)

  • 김운석;조원일;조병원;윤경석;신치범
    • 공업화학
    • /
    • 제5권1호
    • /
    • pp.44-53
    • /
    • 1994
  • 고성능 니켈-철 축전지를 개발하기 위하여 알칼리 축전지로 이론적 용량밀도가 높고 저공해성, 저렴한 가격, 자원의 풍부성 등의 우수한 장점을 가지고 있는 철전극에 대한 연구를 수행하였다. 충방전반응의 특성을 전위주사법, SEM, XRD 분석으로 조사하였으며, 또한 전극용량을 정전류 충방전시험법으로 조사하였다. 철의 순도와 입자크기가 전극용량에 크게 영향을 미쳤으며, 첨가제 $Na_2S$는 전극의 부동태화를 방지하고 수소과전압을 높여 전극용량을 20% 정도 증대시켰다. 전극의 안정성과 용량은 Ni-fibrex와 foamed Ni집전체를 사용하여 증대시켰으며, 또한 소결온도에 영향을 받았다. 전극용량은 350 mAh/g(0.2 C)으로 나타났는데, 이는 이용률 36%에 해당한다.

  • PDF

구리 ECMP에서 전류밀도가 재료제거에 미치는 영향 (Effect of Current Density on Material Removal in Cu ECMP)

  • 박은정;이현섭;정호빈;정해도
    • Tribology and Lubricants
    • /
    • 제31권3호
    • /
    • pp.79-85
    • /
    • 2015
  • RC delay is a critical issue for achieving high performance of ULSI devices. In order to minimize the RC delay time, we uses the CMP process to introduce high-conductivity Cu and low-k materials on the damascene. The low-k materials are generally soft and fragile, resulting in structure collapse during the conventional high-pressure CMP process. One troubleshooting method is electrochemical mechanical polishing (ECMP) which has the advantages of high removal rate, and low polishing pressure, resulting in a well-polished surface because of high removal rate, low polishing pressure, and well-polished surface, due to the electrochemical acceleration of the copper dissolution. This study analyzes an electrochemical state (active, passive, transpassive state) on a potentiodynamic curve using a three-electrode cell consisting of a working electrode (WE), counter electrode (CE), and reference electrode (RE) in a potentiostat to verify an electrochemical removal mechanism. This study also tries to find optimum conditions for ECMP through experimentation. Furthermore, during the low-pressure ECMP process, we investigate the effect of current density on surface roughness and removal rate through anodic oxidation, dissolution, and reaction with a chelating agent. In addition, according to the Faraday’s law, as the current density increases, the amount of oxidized and dissolved copper increases. Finally, we confirm that the surface roughness improves with polishing time, and the current decreases in this process.

산화제($H_2O_2$)의 첨가 유무에 따른 Ti/TiN막의 CMP 연마 특성 (Improvement of Polishing Characteristics Using with and without Oxidant ($H_2O_2$) of Ti/FiN Layers)

  • 이경진;서용진;박창준;김기욱;박성우;김상용;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.88-91
    • /
    • 2003
  • Tungsten is widely used as a plug for the multi-level interconnection structures. However, due to the poor adhesive properties of tungsten (W) on $SiO_2$ layer, the Ti/TiN barrier layer is usually deposited onto $SiO_2$ for increasing adhesion ability with W film. Generally, for the W-CMP (chemical mechanical polishing) process, the passivation layer on the tungsten surface during CMP plays an important role. In this paper, the effect of oxidants controlling the polishing selectivity of W/Ti/TiN layer were investigated. The alumina ($Al_2O_3$) abrasive containing slurry with $H_2O_2$ as the oxidizer, was studied. As our preliminary experimental results, very low removal rates were observed for the case of no-oxidant slurry. This low removal rate is only due to the mechanical abrasive force. However, for Ti and TiN with $H_2O_2$ oxidizer, different removal rate was observed. The removal mechanism of Ti during CMP is mainly due to mechanical abrasive, whereas for TiN, it is due to the formation of metastable soluble peroxide complex.

  • PDF

구리 CMP 슬러리를 위한 산화제 $H_2O_2$의 안정성 (Stability of Oxidizer $H_2O_2$ for Copper CMP Slurry)

  • 이도원;김인표;김남훈;김상용;서용진;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.382-385
    • /
    • 2003
  • Chemical mechanical polishing(CMP) is an essential process in the production of copper-based chips. On this work, the stability of Hydrogen Peroxide($H_2O_2$) as oxidizer of Cu CMP slurry has been investigated. $H_2O_2$ is known as the most common oxidizer in Cu CMP slurry. Copper slowly dissolves in $H_2O_2$ solutions and the interaction of $H_2O_2$ with copper surface had been studied in the literature. Because hydrogen peroxide is a weak acid in aqueous solutions, a passivation-type slurry chemistry could be achieved only with pH buffered solution.[1] Moreover, $H_2O_2$ is so unstable that its stabilization is needed using as oxidizer. As adding KOH as pH buffering agent, stability of $H_2O_2$ decreased. However, stability went up with putting in small amount of BTA as film forming agent. There was no difference of $H_2O_2$ stability between KOH and TMAH at same pH. On the other hand, $H_2O_2$ dispersion of TMAH is lower than that of KOH. Furthermore, adding $H_2O_2$ in slurry in advance of bead milling lead to better stability than adding after bead milling. Generally, various solutions of phosphoric acids result in a higher stability. Using Alumina C as abrasive was good at stabilizing for $H_2O_2$; moreover, better stability was gotten by adding $H_3PO_4$.

  • PDF

BCI3Ne 혼합가스를 이용한 III-V 반도체의 고밀도 유도결합 플라즈마 식각 (High Density Inductively Coupled Plasma Etching of III-V Semiconductors in BCI3Ne Chemistry)

  • 백인규;임완태;이제원;조관식
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1187-1194
    • /
    • 2003
  • A BCl$_3$/Ne plasma chemistry was used to etch Ga-based (GaAs, AIGaAs, GaSb) and In-based (InGaP, InP, InAs and InGaAsP) compound semiconductors in a Planar Inductively Coupled Plasma (ICP) reactor. The addition of the Ne instead of Ar can minimize electrical and optical damage during dry etching of III-V semiconductors due to its light mass compared to that of Ar All of the materials exhibited a maximum etch rate at BCl$_3$ to Ne ratios of 0.25-0.5. Under all conditions, the Ga-based materials etched at significantly higher rates than the In-based materials, due to relatively high volatilities of their trichloride etch products (boiling point CaCl$_3$ : 201 $^{\circ}C$, AsCl$_3$ : 130 $^{\circ}C$, PCl$_3$: 76 $^{\circ}C$) compared to InCl$_3$ (boiling point : 600 $^{\circ}C$). We obtained low root-mean-square(RMS) roughness of the etched sulfate of both AIGaAs and GaAs, which is quite comparable to the unetched control samples. Excellent etch anisotropy ( > 85$^{\circ}$) of the GaAs and AIGaAs in our PICP BCl$_3$/Ne etching relies on some degree of sidewall passivation by redeposition of etch products and photoresist from the mask. However, the surfaces of In-based materials are somewhat degraded during the BCl$_3$/Ne etching due to the low volatility of InCl$_{x}$./.

전기화학적 환원법에 의한 $Hg_{l-x}Cd_xTe$ 재료의 표면특성 개선에 관한 연구 (A Study of Improvement the Surface Properties of $Hg_{l-x}Cd_xTe$ material by using Electro-Chemical Reduction)

  • 이상돈;김봉흡;강형부;최경구;정용택;박희숙;김흥국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1280-1282
    • /
    • 1994
  • The method of passivation for protecting the $Hg_{l-x}Cd_xTe$ surface is important device fabrication process, because the surface components are highly reactive leading to its chemical and electrical instability. Especially, the material of which composition is x=0.2 or 0.3, is narrow bandgap semiconductor and used as detector of infrared radiation. The device performance of narrow bandgap semiconductors are largely governed by the properties of the semiconductor surface. The electro-chemical processing of $Hg_{l-x}Cd_xTe$ allows rigorous control of the surface chemistry and provides an in-situ monitor of surface reaction. So electro-chemical reduction at specific potential can selectively eliminate the undesirable species on the surface and manipulated to reproducibly attain the desired stoichiometry. This method shows to assess the quality or chemically treated $Hg_{l-x}Cd_xTe$ good surface.

  • PDF