• Title/Summary/Keyword: Passivation Material

Search Result 233, Processing Time 0.032 seconds

Study on the characteristics of inorganic thin film for OLED passovation (OLED passivation에 적용하기 위한 무기박막의 특성에 관한 연구)

  • Yoon, Jae-Kyoung;Kwon, Oh-Kwan;Yoon, Won-Min;Shin, Hoon-Kyu;Park, Chan-Eon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.176-176
    • /
    • 2010
  • OLED(Organic Light Emitting Device)는 LCD(Liquid Crystal Display)의 뒤를 잇는 차세대 디스플레이의 선두주자로서 자체발광형이기 때문에 백라이트 등의 보조광원이 불필요하며, 구동전압이 낮고 넓은 시야각과 빠른 응답속도 등의 특징을 가지고 있다. 또한 플렉서블 기판을 사용할 수 있어 차세대 디스플레이인 플렉서블 디스플레이에 적합하다. 플렉서블한 디스플레이를 만들기 위해서 플라스틱 기판에 OLED 물질을 사용하여 기존에 무겁고, 깨지기 쉬우며, 변형이 불가능한 유리로 만든 소자 보다 더 가볍고 깨지지 않고 변형이 가능한 플렉서블 디스플레이를 제작 할 수 있다. 그러나 플라스틱 기판은 매우 큰 투습율을 가지고 있어 OLED소자에 적용시키면 공기 중의 수분이나 산소와 접촉이 많아져 쉽게 산화되어 소자의 효율 및 수명이 짧아진다. 또한 OLED에 사용되는 유기물도 산소나 수분에 의해 특성이 급격히 저하되기 때문에 산소 및 수분의 차단은 필수적이다. 이러한 단점을 최소화하기 위해서 PECVD(Plasma Enhanced Chemical Vapor Deposition)로 만든 SiON(Silicon Oxynitride), $SiO_2$(Sillicon dioxide), $Si_3N_4$(Sillicon nitride) 박막을 차단막(Passivation layer)으로 사용하였다. PECVD(Plasma Enhanced Chemical Vapor Deposition)로 만든 SiON(Silicon Oxynitride), $SiO_2$(Sillicon dioxide), $Si_3N_4$(Sillicon nitride) 각각의 박막의 Crack의 특성을 85%-$85^{\circ}C$조건에서 24hr 측정하였다.

  • PDF

Fabrication of High-yield Si Thin-membranes by Electrochemical Etch-stop (전기화학적 식각정지에 의한 고수율 실리콘 박막 멤브레인 제작)

  • 정귀상;박진상;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.223-227
    • /
    • 2001
  • In this paper, the authors present the fabrication of high-yield Si thin-membranes by electrochemical etch-stop in tetramethyl ammonium hydroxide (TMAH): isopropyl alcohol (IPA):pyrazine solutions. The current-voltage (I-V) characteristics of n- and p-type Si in TMAH:IPA;pyrazine solutions were analysed, repsectively. Open circuit potential (OCP)and passivation potential (PP) of n- and p-type Si, respectively, were obtained and applied potential was selected between n- and p-type Si PPs. The electrochemical etch-stop method was applied to the fabrication of 801 micro-membranes with 20.0 $\mu\textrm{m}$ thickness on a 5" Si wafer. The average thickness of fabricated 801 micro-membranes on one wafer 20.03$\mu\textrm{m}$ and the standard deviation was ${\pm}$0.26$\mu\textrm{m}$. The Si surface of the etch-stopped micro-membranes was extremely flat with no noticeable taper or nonuniformity. The results indicate that use of the electrochemical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes.

  • PDF

Development of OLED Passivation Method for High efficency and life time (고효율 및 장수명의 OLED Passivation 기술 개발)

  • Han, Jin-Woo;Kim, Jong-Hwan;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.267-268
    • /
    • 2005
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. In this investigation, the SiON and Polyimide(PI) layer showed the most suitable properties. Under these conditions, the WVTR(water vapour transition rate) for PET can be reduced from level of 0.57 g/$m^2$/day (bare subtrate) to $1{\times}10^{-5}$ /$m^2$/day after application of a SiON and Polyimide layer. These results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

The Passivation of GaAs Surface by Laser CVD

  • Sung, Yung-Kwon;Song, Jeong-Myeon;Moon, Byung-Moo;Rhie, Dong-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1242-1247
    • /
    • 2003
  • In order to passivate the GaAs surface, silicon-nitride films were fabricated by using laser CVD method. SiH$_4$ and NH$_3$ were used to obtain SiN films in the range of 100∼300$^{\circ}C$ on p-type (100) GaAs substrate. To determine interface characteristics of the metal-insulator-GaAs structure, electrical measurements were performed such as C-V curves and deep level transient spectroscopy (DLTS). The results show that the hysteresis was reduced and interface trap density was lowered to 1,012 ∼ 1,013 at 100 ∼ 200$^{\circ}C$. According to the study of surface leakage current, the passivated CaAs has less leakage current compared to non-passivated substrate.

N-type Silicon Solar Cell Based on Passivation Layer Grown by Rapid Thermal Oxidation (Rapid Thermal Oxidation 기반의 표면 보호막을 이용한 n-type 실리콘 태양전지의 제작과 전기적 특성 분석)

  • Ryu, Kyungsun;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.18-21
    • /
    • 2013
  • $SiO_2$ layer grown by rapid thermal oxidation and $SiN_x$ layer were used for passivating the surface of n-type silicon solar cell, instead of only $SiN_x$ layer generally used in photovoltaic industry. The rapid thermal oxidation provides the reduction of processing time and avoids bulk life time degradation during the processing. Improvement of 30 mV in Voc and $2.7mA/cm^2$ in Jsc was obtained by applying these two layers. This improvement led to fabrication of a large area ($239cm^2$) n-type solar cell with 17.34% efficiency. Internal quantum efficiency measurement indicates that the improvement comes from the front side passivation, but not the rear side, by using $SiO_2/SiN_x$ stack.

A Study on the Electrochemical Reaction of Metal at Electrolyte (전해액에서 금속막의 전기화학적 반응 고찰)

  • Lee, Young-Kyun;Park, Sung-Woo;Han, Sang-Jun;Lee, Sung-Il;Choi, Gwon-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.88-88
    • /
    • 2007
  • Chemical mechanical polishing (CMP) 공정은 그 어원에서 알 수 있듯이 슬러리의 화학적인 요소와 웨이퍼에 가해지는 기계적 압력에 의해 결정되는 평탄화 기술이다. 최근, 금속배선공정에서 높은 전도율과 재료의 값이 싸다는 이유로 Cu률 사용하였으나, 디바이스의 구조적 특성을 유지하기 위해 높은 압력으로 인한 새로운 다공성 막(low-k)의 파괴와, 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 이러한 문제점을 해결하고자, 본 논문에서는 Cu 표면에 Passivation layer를 형성 및 제거하는 개념으로 공정시 연마제를 사용하지 않으며, 낮은 압력조건에서 공정을 수행하기 위해, 전해질의 농도 변화에 따른 선형추의전압전류법과 순환전압전류법을 사용하여 전압활성화에 의한 전기화학적 반응이 어떤 영향을 미치는지 연구하였다.

  • PDF

Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation (실리콘 태양전지 제조공정과 열화의 상관관계 분석)

  • Yewon Cha;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.

CAPACITY ANALYSIS OF THE SILVER OXIDE-ZINC CELL (PHASE 1)

  • 이완구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.14 no.4
    • /
    • pp.15-25
    • /
    • 1981
  • Electrical behaviors of the divalent silver oxide-zinc cell were analyzed for imporving capacity and keeping electrodes from passivation or sharp increases of cell internal resistance in the course of discharge. One of primary factors in relation to lowering performance can be depicted by cell internal resistance increase being created by various routes, first by insufficiency and/or the carbonation of the electrolyte, secondly by barrier blockage, thirdly by electrode passivation which are due to improper material use of wrong processing, and by gassing as fourth cause. The carbonation causes electrobyte to have impedance up as well as poor amalgamation, resulting in vigorous corrosion reaction of copper plated inner top, evolving hydrogen gas. Electrical characteristics of the cell was reviewed to elucidate relationships between the discharge capacity and the cell internal resistance.

  • PDF

A study on photoreflectance of GaAs surface treated with $Na_2S.9H_2O$ (황처리된 GaAs표면의 Photoreflectance에 관한 연구)

  • 이정열;김인수;배인호;김말문;김규호
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.418-425
    • /
    • 1995
  • The surface of GaAs was treated by using the 0.1M solution of N $a_{2}$S.9 $H_{2}$O. The passivation of the surface in this sample was investigated by the photoreflectance(PR) experiment. The surface electric field( $E_{s}$) and built-in voltage( $V_{bi}$ ) discussed from Franz-Keldysh oscillation of PR signals. The density of surface states and Fermi level of GaAs treated with N $a_{2}$S.9 $H_{2}$O for 40min were determined 1.61*10$^{12}$ c $m^{-2}$ and 0.73eV. These values were about 15 and 10% smaller than those in untreated sample.e.

  • PDF

Rigid and flexible displays with solution processed dielectric passivation layer integrated with E-Ink imaging films

  • Krishnamoorthy, Ahila;Spear, Richard;Gebrebrhan, Amanuel;Stifanos, Mehari;Yellowaga, Deborah;O'Rourke, Shawn;Loy, Doug;Dailey, Jeff;Marrs, Michael;Ageno, Scott
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.86-88
    • /
    • 2008
  • Organosiloxane based spin on planarizing dielectrics (PTS-E and PTS-R) were developed for application in flat panel displays as a replacement to conformal chemical vapor deposited SiNx. Here we demonstrate the successful use of siloxane-based material as a passivation layer for active matrix $\alpha$-Si thin film transistors (TFT) on both rigid and flexible substrates.

  • PDF