• Title/Summary/Keyword: Passenger bus

Search Result 155, Processing Time 0.041 seconds

Development of a Model for Dynamic Station Assignmentto Optimize Demand Responsive Transit Operation (수요대응형 모빌리티 최적 운영을 위한 동적정류장 배정 모형 개발)

  • Kim, Jinju;Bang, Soohyuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • This paper develops a model for dynamic station assignment to optimize the Demand Responsive Transit (DRT) operation. In the process of optimization, we use the bus travel time as a variable for DRT management. In addition, walking time, waiting time, and delay due to detour to take other passengers (detour time) are added as optimization variables and entered for each DRT passenger. Based on a network around Anaheim, California, reserved origins and destinations of passengers are assigned to each demand responsive bus, using K-means clustering. We create a model for selecting the dynamic station and bus route and use Non-dominated Sorting Genetic Algorithm-III to analyze seven scenarios composed combination of the variables. The result of the study concluded that if the DRT operation is optimized for the DRT management, then the bus travel time and waiting time should be considered in the optimization. Moreover, it was concluded that the bus travel time, walking time, and detour time are required for the passenger.

Development of Real-Time Optimal Bus Scheduling Models (실시간 버스 운행계획수립 모형 개발)

  • Kim, Wongil;Son, Bongsoo;Chung, Jin-Hyuk;Lee, Jeomho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.587-595
    • /
    • 2008
  • Many studies on bus scheduling optimization have been done from the 1960s to recent years for establishing rational bus schedule plan that can improve convenience of bus passengers and minimize unnecessary runs. After 2000, as part of the Intelligent Transport Systems (ITS), the importance of the schedule management and providing schedule information through bus schedule optimization has become a big issue, and much research is being done to develop optimization models that will increase bus passenger convenience and, on the side of bus management, minimize unnecessary bus operation. The purpose of this study is to calculate the optimal bus frequency and create a timetable for each bus stop by applying DTR or DTRC model that use data for each bus stop and route segment. Model verification process was implemented using data collected from bus management system (BMS) and integrated transit-fare card system for bus route of Seoul's No. 472 line. In order to evaluate the reliability and uncertainty of optimal solution, sensitivity analysis was implemented for the various parameters and assumptions used in the bus scheduling model.

Time-distance Accessibility Computation of Seoul Bus System based on the T-card Transaction Big Databases (교통카드 빅데이터 기반의 서울 버스 교통망 시간거리 접근성 산출)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.539-555
    • /
    • 2015
  • This study proposes the methodology for measuring the time-distance accessibility on the Seoul bus system based on the T-card transaction databases and analyzes the results. T-card transaction databases contain the time/space information of each passenger's locations and times of the departure, transfers, and destination. We introduce the bus network graph and develop the algorithms for time-distance accessibility measurement. We account the average speed based on each passenger's get-in and getoff information in the T-card data as well as the average transfer time from the trip chain transactions. Employing the modified Floyd APSP algorithm, the shortest time distance between each pair of bus stops has been accounted. The graph-theoretic nodal accessibility has been given by the sum of the inverse time distance to all other nodes on the network. The results and spatial patterns are analyzed. This study is the first attempt to measure the time-distance accessibility for such a large transport network as the Seoul bus system consists of 34,934 bus stops on the 600 bus routes, and each bus route can have different properties in terms of speed limit, number of lanes, and traffic signal systems, and thus has great significance in the accessibility measurement studies.

  • PDF

Computer simulation of passenger flow (컴퓨터 시뮬레이션에 의한 이용객의 교통에 관한 연구)

  • 차균현
    • 전기의세계
    • /
    • v.27 no.1
    • /
    • pp.35-44
    • /
    • 1978
  • In this paper the best way of servicing to the waiting guests at the Express Bus Terminal, is to determined by the computer simulation. The mathematical model for the waiting guests is formulated with the statistics data by researching the waiting lines of the guests at the guests at the specified Express Bus Terminal. The waiting phenomena is simulated using Monte Carlo method to decide the proper number of window and the time for servicing. Finally it present the way of the improvement of service with the good results of simulation.

  • PDF

An Analysis of Access and Egress Mode Choice to Regional Railway Station using Transit Smart Card Data (a case of Seoul station) (지역 간 철도 이용객의 접근통행 패턴 연구)

  • Choi, Myoung-Hun;Eom, Jin-Ki;Lee, Jun;Moon, Dae-Seop;Song, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.595-600
    • /
    • 2011
  • This study analyzed passenger's access modes that connect to regional railway station and developed a model of access mode choice based on transit smart card data of Seoul station as a case study. The study boundary includes sixteen bus stops around the station. The results show that most passengers access to station have less than two transfers. Of total 15000, eighty percent of passengers use metro and the rest of people take a bus. Interestingly, it is found that almost same proportions of passengers use metro and bus for egress the station. Consequently, metro is found to be most likely used mode compared to bus for both access and egress trips.

  • PDF

Torsion Rigidity of Composite Material Cmbody for Low Floor Bus (한국형 저상버스 복합소재 차체에 대한 비틀림 강성 평가)

  • Leem, Song-Gyu;Kim, Yeon-Su;Mok, Jai-Kyun;Jang, Se-Ky;Cho, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.548-553
    • /
    • 2008
  • Low Floor buses have no steps to get on or get off the main cabin to provide the old and the handicapped with easy access. The car body for the low floor bus was designed to consider Korean physical standard, passenger capacity (standee, seated, handicapped), arrangement of vehicle components, and bus law or regulations. It was designed as an one body, without any reinforcement armature, which has light-weight sandwich constructions with glass epoxy skins, aluminum honeycomb cores and inner-frames. In this paper, torsion rigidity of the designed car body was evaluated and compared with that of a car body with reinforcement armatures in the cabin. Finite element method verified that the designed car body without reinforcement armatures could satisfy requirements of torsion rigidity.

  • PDF

Determining Level-of-Service Criteria of Headway Adherence (버스 운행 정시성의 서비스수준 기준산정)

  • Go, Seung-Yeong;Park, Jun-Sik
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.151-160
    • /
    • 2005
  • In case of public transit such as bus system, the probability concept is used to evaluate the Level-of-Service of the operations. And each levels could be classified according to the linear probability value. (TCQSM: Transit Capacity and Quality of Service Manual-2nd Edition, TRB, Washington DC., 2003) In this case, the drivers or passengers wouldn't think that the service level isn't equivalent to the linear probability value. Thus the linear probability value doesn't exactly reflect the service level. This study shows the problems of using the linear probability value in classifying the service level through the case of evaluation of bus operation's punctuality, presented in TCQSM. To make up for the problems of such case, two methodologies are presented in this study. The method of determining Level-of-Service criteria using probability density of headway variation's distribution, presented in this paper, adequately reflects passenger's expected waiting time. According to the application result to real bus operation data, it tis better than the method of TCQSM to evaluate the reliability of bus operations. However further research about the relations between utility difference and passenger feeling of service level in necessary to apply the method that uses the utility function. It remains as the limitation of this paper.

Determination of the Optimal Bus-stop Location and Headway of Bus Rapid Transit Using Bus-stop-based O-D Data (급행버스 노선의 정류장 위치 및 배차간격 결정에 관한 연구 (노선별 정류장간 O-D 자료를 활용하여))

  • Cho, Hye-Jin;Lee, Young-In
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.63-74
    • /
    • 2005
  • When we introduce the BRT systems, it is very important to decide the operating factors, such as bus-stop locations or headway. If the factors are inappropriate, unessential expenses for the operator and users of the bus line may be caused, and it leads increase of social total cost. So, it is necessary that we consider users' origin and destination of each bus line when we set location of bus-stops and the optimal headway. Meanwhile, Smart Card System was introduced of fare collection for the Public Transportation Reform in Seoul last year. This new card system makes it possible to store up the information about bus operating and passenger's trip link. With these substantial information. we can estimate bus-stop-based O-D table. So, in this thesis, it was studied a systematic methodology to find the optimal location and headway for skip-stop bus system (as a type of first step for BRT). The proposed methodology in this thesis is expected to be useful to effect analysis or setting operating factors for skip-stop bus system in each bus line.

Impact Assessment of an Autonomous Demand Responsive Bus in a Microscopic Traffic Simulation (미시적 교통 시뮬레이션을 활용한 실시간 수요대응형 자율주행 버스 영향 평가)

  • Sang ung Park;Joo young Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.70-86
    • /
    • 2022
  • An autonomous demand-responsive bus with mobility-on-demand service is an innovative transport compensating for the disadvantages of an autonomous bus and a demand-responsive bus with mobility-on-demand service. However, less attention has been paid to the quantitative impact assessment of the autonomous demand-responsive bus due to the technological complexity of the autonomous demand-responsive bus. This study simulates autonomous demand-responsive bus trips by reinforcement learning on a microscopic traffic simulation to quantify the impact of the autonomous demand-responsive bus. The Chungju campus of the Korea National University of Transportation is selected as a testbed. Simulation results show that the introduction of the autonomous demand-responsive bus can reduce the wait time of passengers, average control delay, and increase the traffic speed compared to the results with fixed route bus service. This study contributes to the quantitative evaluation of the autonomous demand-responsive bus.

A Review on the Interpretative Guidelines on EU Air Transport Passenger Rights Regulations in the Context of the Developing Situation with COVID-19 (항공여객보상에 관한 EC 261/2004 규칙의 COVID-19 관련 해석지침 검토)

  • Sur, Ji-Min
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.39-63
    • /
    • 2020
  • This paper reviews the Interpretative Guidelines on EU passenger rights regulations in the context of the developing situation with COVID-19 of EU commission. To enlighten the obscurity and to mitigate the economic impacts of the COVID-19, European Commission has published "Interpretative Guidelines on EU passenger rights regulations in the context of the developing situation with Covid-19" on March 18, 2020. The Guideline essentially aims to create a coherent system of rules to assist the passengers, industry and national authorities overall under the unprecedented circumstances across the European Union. To do so, the Guideline is drafted to cover the rights of passengers travelling by air, rail, ship or bus/coach, maritime and inland waterways, as well as the corresponding obligations for carriers. From an aviation industry focused perspective, by referencing the Regulation (EC) numbered 261/2004, the Guideline specifically applies to cancellation and delay in flights which are seen as the dark spots for the air carriers concerning potential burdens.