DOI QR코드

DOI QR Code

Development of a Model for Dynamic Station Assignmentto Optimize Demand Responsive Transit Operation

수요대응형 모빌리티 최적 운영을 위한 동적정류장 배정 모형 개발

  • Kim, Jinju (Center for Connected & Automated Driving Research, Korea Transport Institute) ;
  • Bang, Soohyuk (Center for Connected & Automated Driving Research, Korea Transport Institute)
  • 김진주 (한국교통연구원 자율협력주행연구센터) ;
  • 방수혁 (한국교통연구원 자율협력주행연구센터)
  • Received : 2021.11.25
  • Accepted : 2021.12.22
  • Published : 2022.02.28

Abstract

This paper develops a model for dynamic station assignment to optimize the Demand Responsive Transit (DRT) operation. In the process of optimization, we use the bus travel time as a variable for DRT management. In addition, walking time, waiting time, and delay due to detour to take other passengers (detour time) are added as optimization variables and entered for each DRT passenger. Based on a network around Anaheim, California, reserved origins and destinations of passengers are assigned to each demand responsive bus, using K-means clustering. We create a model for selecting the dynamic station and bus route and use Non-dominated Sorting Genetic Algorithm-III to analyze seven scenarios composed combination of the variables. The result of the study concluded that if the DRT operation is optimized for the DRT management, then the bus travel time and waiting time should be considered in the optimization. Moreover, it was concluded that the bus travel time, walking time, and detour time are required for the passenger.

본 논문은 수요대응형 모빌리티 이용객의 출발지와 목적지까지 최적 경로 산정을 위한 동적정류장 배정 모형을 개발하였다. 여기서 최적화를 위한 변수로는, 운영자 측면에서 버스통행시간과 이용자 측면에서 서비스 이용 시 추가로 소요되는 정류장까지 도보시간 및 대기시간, 우회시간을 사용하였다. 미국 캘리포니아주 애너하임과 주변 도시를 포함하는 네트워크를 대상으로 승객이 예약한 시종점에서 접근 가능한 동적정류장 리스트를 산정하고 K-means 클러스터링 기법을 이용하여 시종점 그룹들을 각기 차량에 배정하였다. 버스통행시간과 이용자 추가소요시간을 최소화하는 동적정류장 위치 및 버스노선 결정을 위한 모형을 개발하고 다목적 최적화를 위해 NSGA-III 알고리즘을 적용하였다. 최종적으로, 모델의 효용성을 평가하기 위해 이용자 추가소요시간 간의 변수를 조정하여 7개의 시나리오를 설정하였고 이를 통해 목적함수의 타당성을 분석하였다. 그 결과, 운영자 측면에서는 버스통행시간과 승객 대기시간만 고려한 시나리오가, 이용자 측면에서는 버스통행시간, 도보시간, 우회시간을 적용한 시나리오가 가장 우수하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 교통물류연구사업(21TLTP-B146748-04)의 연구비지원 및 한국교통연구원 지원으로 수행하였습니다.

References

  1. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E. and Rus, D.(2017), "On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment", Proceedings of the National Academy of Sciences, vol. 114, no. 3, pp.462-467. https://doi.org/10.1073/pnas.1611675114
  2. Arbex, R. O. and Da Cunha, C. B.(2015), "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm", Transportation Research Part B: Methodological, vol. 81, no. 2, pp.355-376. https://doi.org/10.1016/j.trb.2015.06.014
  3. Ban, J. and Jayakrishnan, R., http://www.bgu.ac.il/~bargera/tntp/, 2021.11.22.
  4. Bodin, L. D. and Sexton, T. R.(1983), The Multi-vehicle subscriber dial-a-ride problem, Monterey, California, Naval Postgraduate School.
  5. Bureau of Public Roads(1964), Traffic Assignment Manual, United States, Department of Commerce, Urban Planning Division, Washington D.C.
  6. Calvo, R. W. and Colorni, A.(2007), "An Effective and fast heuristic for the Dial-a-Ride problem", A Quarterly Journal of Operations Research, vol. 5, no. 1. pp.61-73.
  7. Celebi, M. E., Kingravi, H. A. and Vela, P. A.(2013), "A comparative study of efficient initialization methods for the k-means clustering algorithm", Expert Systems with Applications, vol. 40, no. 1, pp.200-210. https://doi.org/10.1016/j.eswa.2012.07.021
  8. Chebbi, O. and Chaouachi, J.(2016), "Reducing the wasted transportation capacity of personal rapid transit systems: An integrated model and multi-objective optimization approach", Transportation Research Part E: Logistics and Transportation Review, vol. 89, pp.236-258. https://doi.org/10.1016/j.tre.2015.08.008
  9. Chen, T., Zhang, B., Pourbabak, H., Kavousi-Fard, A. and Su, W.(2016), "Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems", IEEE Transactions on Smart Grid, vol. 9, no. 4, pp.3563-3572. https://doi.org/10.1109/TSG.2016.2635025
  10. Chiang, T. C. and Hsu, W. H.(2014), "A Knowledge-based evolutionary algorithm for the multiobjective vehicle routing problem with time windows", Computers & Operations Research, vol. 45, pp.25-37. https://doi.org/10.1016/j.cor.2013.11.014
  11. Cordeau, J. F.(2006), "A Branch-and-cut algorithm for the dial-a-ride problem", Operations Research, vol. 54, no. 3 pp.573-586. https://doi.org/10.1287/opre.1060.0283
  12. Coslovich, L., Pesenti, R. and Ukovich, W.(2006), "A Two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem", European Journal of Operational Research, vol. 175, no. 3, pp.1605-1615. https://doi.org/10.1016/j.ejor.2005.02.038
  13. Das, I. and Dennis, J. E.(1998), "Normal-boundary Intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems", SIAM Journal on Optimization, vol. 8, no. 3, pp.631-657. https://doi.org/10.1137/S1052623496307510
  14. Deb, K. and Jain, H.(2013), "An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints", IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp.577-601.
  15. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A. M. T.(2002), "A Fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.182-197. https://doi.org/10.1109/4235.996017
  16. Diana, M. and Dessouky, M. M.(2004), "A New regret insertion heuristic for solving large-scale dial-a-ride problems with time windows", Transportation Research Part B: Methodological, vol. 38, no. 6, pp.539-557. https://doi.org/10.1016/j.trb.2003.07.001
  17. Diana, M., Dessouky, M. M. and Xia, N.(2006), "A Model for the fleet sizing of demand responsive transportation services with time windows", Transportation Research Part B: Methodological, vol. 40, no. 8, pp.651-666. https://doi.org/10.1016/j.trb.2005.09.005
  18. Dondo, R. and Cerda, J.(2007), "A Cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows", European Journal of Operational Research, vol. 176, no. 3, pp.1478-1507. https://doi.org/10.1016/j.ejor.2004.07.077
  19. Dou, X., Gong, X., Guo, X. and Tao, T.(2017), "Coordination of feeder bus schedule with train service at integrated transport hubs", Transportation Research Record, vol. 2648, no. 1, pp.103-110. https://doi.org/10.3141/2648-12
  20. Dumas, Y., Desrosiers, J. and Soumis, F.(1991), "The Pickup and delivery problem with time windows", European Journal of Operational Research, vol. 54, no. 1, pp.7-22. https://doi.org/10.1016/0377-2217(91)90319-Q
  21. Fan, W. and Machemehl, R. B.(2006), "Optimal transit route network design problem with variable transit demand: Genetic algorithm approach", Journal of Transportation Engineering, vol. 132, no. 1, pp.40-51. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:1(40)
  22. Holland, J. H.(1975), Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, MIT Press.
  23. Horn, M. E.(2002), "Fleet scheduling and dispatching for demand-responsive passenger services", Transportation Research Part C: Emerging Technologies, vol. 10, no. 1, pp.35-63. https://doi.org/10.1016/S0968-090X(01)00003-1
  24. Konak, A., Coit, D. W. and Smith, A. E.(2006), "Multi-objective optimization using genetic algorithms: A tutorial", Reliability Engineering & System Safety, vol. 91, no. 9, pp.992-1007. https://doi.org/10.1016/j.ress.2005.11.018
  25. Kuah, G. K. and Perl, J.(1989), "The Feeder-bus network-design problem", Journal of the Operational Research Society, vol. 40, no. 8, pp.751-767. https://doi.org/10.1057/palgrave.jors.0400806
  26. Lee, Y. J., Meskar, M., Nickkar, A. and Saheb, S.(2019), "Development of an algorithm for optimal demand responsive relocatable feeder transit networks serving multiple trainsand stations", Urban Rail Transit, vol. 5, no. 3. pp.186-201. https://doi.org/10.1007/s40864-019-00109-z
  27. Mahmoudi, M. and Zhou, X.(2016), "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state-space-time network representations", Transportation Research Part B: Methodological, vol. 89, pp.19-42. https://doi.org/10.1016/j.trb.2016.03.009
  28. Ministry of Land, Infrastructure and Transport(2013), Traffic impact analysis.improvement strategy guideline.
  29. Pan, S., Yu, J., Yang, X., Liu, Y. and Zou, N.(2015), "Designing a flexible feeder transit system serving irregularly shaped and gated communities: Determining service area and feeder route planning", Journal of Urban Planning and Development, vol. 141, no. 3.
  30. Parvasi, S. P., Mahmoodjanloo, M. and Setak, M.(2017), "A Bi-level school bus routing problem with bus stops selection and possibility of demand outsourcing", Applied Soft Computing, vol. 61, pp.222-238. https://doi.org/10.1016/j.asoc.2017.08.018
  31. Qiu, F., Li, W. and Zhang, J.(2014), "A Dynamic station strategy to improve the performance of flex-route transit services", Transportation Research Part C: Emerging Technologies, vol. 48, pp.229-240. https://doi.org/10.1016/j.trc.2014.09.003
  32. Savelsbergh, M. and Sol, M.(1998), "Drive: Dynamic routing of independent vehicles", Operations Research, vol. 46, no. 4, pp.474-490. https://doi.org/10.1287/opre.46.4.474
  33. Sheffi, Y.(1985), Urban transportation networks: Equilibrium analysis with mathematical programming methods, Prentice Hall.
  34. Srinivas, N. and Deb, K.(1994), "Multi-objective function optimization using non-dominated sorting genetic algorithms", Evolutionary Computation Journal, vol. 2, no. 3, pp.221-248. https://doi.org/10.1162/evco.1994.2.3.221
  35. Sun, B., Wei, M., Yang, C., Xu, Z. and Wang, H.(2018), "Personalised and coordinated demand-responsive feeder transit service design: A genetic algorithms approach", Future Internet, vol. 10, no. 7, p.61. https://doi.org/10.3390/fi10070061
  36. Taplin, J. H. and Sun, Y.(2019), "Optimizing bus stop locations for walking access: Stops-first design of a feeder route to enhance a residential plan", Environment and Planning B: Urban Analytics and City Science, vol. 47, no. 7, pp.1237-1259. https://doi.org/10.1177/2399808318824108
  37. Transportation Networks for Research Core Team, Transportation Networks for Research, https://github.com/bstabler/TransportationNetworks, 2021.11.22.
  38. Wang, H.(2017), "Routing and scheduling for a last-mile transportation system", Transportation Science, vol. 53, no. 1, pp.131-147. https://doi.org/10.1287/trsc.2017.0753
  39. Wang, L., Wirasinghe, S. C., Kattan, L. and Saidi, S.(2018), "Optimization of demand-responsive transit systems using zonal strategy", International Journal of Urban Sciences, vol. 22, no. 3, pp.366-381. https://doi.org/10.1080/12265934.2018.1431144
  40. Wardrop, J. G.(1952), "Road paper. Some theoretical aspects of road traffic research", Proceedings of the Institution of Civil Engineers, vol. 1, no. 3, pp.325-362.
  41. Yannibelli, V., Pacini, E., Monge, D., Mateos, C. and Rodriguez, G.(2020), "A Comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud", Scientific Programming, vol. 2020, 4653204.