• 제목/요약/키워드: Passage Vortex

검색결과 84건 처리시간 0.021초

냉각유로 내 곡관부 및 유로의 회전이 압력강하에 미치는 영향 (Pressure Drop Characteristics in a Coolant Passage With Turning Region and Rotation)

  • 김경민;조형희
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.32-40
    • /
    • 2007
  • The present study investigated local pressure drop in a rotating smooth square duct with turning region. The duct has a hydraulic diameter $(D_h)$ of 26.7mm and a divider wall of 6.0mm or $0.225D_h$. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure coefficient distribution $(C_p)$, the friction factor (f) and the thermal performance $({\eta})$ are presented on the leading, the trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}-turn$ produces Dean vortices that cause the high pressure drop in the turning region. The duct rotation results in the pressure coefficient discrepancy between the leading and trailing surfaces. That is, the high pressure values appear on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. As the rotation number increases, the pressure discrepancy enlarges. In the fuming region, a pair of the Dean vortices in the stationary case transform into one large asymmetric vortex cell, and then the pressure drop characteristics also change.

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

터빈 동익 컷백스퀼러팁 하류에서의 3차원 유동 및 압력손실 (Three-Dimensional Flow and Aerodynamic Loss Downstream of Turbine Rotor Blade with a Cutback Cavity Squealer Tip)

  • 김선웅;이상우
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of channel cutback on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-to-chord ratio of $h_{st}/c$ = 5.51% and h/c = 2.0% respectively. The cutback length-to-camber ratio is changed to be $CB/c_c$ = 0.0, 0.1, 0.2 and 0.3. The results show that longer cutback delivers not only stronger secondary flow but also higher aerodynamic loss in the tip leakage vortex region, meanwhile it leads to lower aerodynamic loss in the passage vortex region. The discharge of cavity fluid through the cutback opening provides a beneficial effect in the reduction of aerodynamic loss, whereas there also exists a side effect of aerodynamic loss increase due to local wider tip gap near the trailing edge. With increasing $CB/c_c$ from 0.0 to 0.3, the aerodynamic loss coefficient mass-averaged all over the measurement plane tends to increase slightly.

스퀼러팁의 압력면 개방길이 변화에 따른 터빈 익렬 팁간극 유동 특성 및 압력손실 (Tip Gap Flow and Aerodynamic Loss Generation over a Cavity Squealer Tip with the Variation of Pressure-Side Opening Length in a Turbine Cascade)

  • 천주홍;이상우
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.5-10
    • /
    • 2012
  • The effect of pressure-side opening length on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-tochord ratio of $h_{st}/c$ = 5.05% and h/c = 2.0% respectively. The opening length-to-camber ratio is changed to be $OL/c_c$ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 The results show that longer OL leads not only to weaker secondary flow but also to lower aerodynamic loss in the tip leakage vortex region, while it significantly widens the area with high aerodynamic loss in the passage vortex region. The aerodynamic loss coefficient mass-averaged all over the measurement plane is kept almost constant for $0.0{\leq}OL/c_c{\leq}0.3$, whereas it increases rapidly for $OL/c_c$ > 0.3 in proportion to $OL/c_c$. There is little deterioration in flow turning with increasing $OL/c_c$.

회전하는 덕트내 설치된 $70^{\circ}$ 경사요철의 열전달 특성 (Heat Transfer in Rotating Duct with $70^{\circ}$ Angled Ribs)

  • 최청;이세영;원정호;조형희;박병규
    • 한국유체기계학회 논문집
    • /
    • 제4권3호
    • /
    • pp.7-13
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a cooling passage of rotating gas-turbine blades. The rotating duct has staggered ribs with $70^{\circ}$ attack angle, which are attached on leading and trailing surfaces. Naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. Additional numerical calculations are conducted to analyze the flow patterns in the cooling passage. The present experiments employ two-surface heating conditions in the rotating duct because the exposed surfaces to hot gas stream are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. Secondary flows are generated by Coriolis and centrifugal forces in the spanwise and streamwise directions. The ribs attached on the walls disturb the mainflow resulting in recirculation and secondary flows near the ribbed wall. The local heat transfer and flow patterns in the passage are changed significantly according to rib configurations and duct rotation speeds. Therefore, the geometry and arrangement of the ribs are important for the advantageous cooling performance. The experimental results show that the ribs enhance the heat transfer more than $70\%$ from that of the smooth duct. The duct rotation generates the heat transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The overal heat transfer pattern on the leading and trailing walls for the first and second passes are depended on the rotating speed, but the local heat transfer trend is affected mainly by the rib arrangements.

  • PDF

터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실 (Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade)

  • 정재성;봉선우;이상우
    • 대한기계학회논문집B
    • /
    • 제41권8호
    • /
    • pp.521-529
    • /
    • 2017
  • 본 연구에서는 항공기 추진용 가스터빈 엔진의 고증속 터빈 제1단 정익 익렬을 새로이 구축하고, 이 정익의 기본 유동 특성에 대하여 연구하였다. 그 결과 본 연구에서 도입된 정익의 압력면에는 강한 순압력구배가 존재하는 반면, 흡입면에는 앞전에서 미드코드 근처까지 압력면보다 훨씬 더 심한 순압력구배가 존재하고 그 이후 역압력구배가 존재하였다. 두 종류의 유막법을 적용한 유동의 가시화 실험을 통하여, 정익 앞전 상류 영역에 4와류모델 말발굽와류 시스템이 존재함을 확인하였고, 입구 경계층 유동의 박리선과 재부착 유동의 박리선을 정확히 파악하였다. 이와 함께 이 고증속 정익 익렬 하류에서의 2차유동, 압력손실, 선회각, 등에 대한 데이터를 확보하였다.

재생펌프의 유동해석 및 누설유동에 관한 연구 (Through Flow Analysis and Leakage Flow of a Regenerative Pump)

  • 심창열;강신형
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1015-1022
    • /
    • 2003
  • Flows in a regenerative pump were calculated for several flow-rates, using the CFX-Tascflow. The calculated results show the vortex structure in the impeller and side channel. The predicted performance shows considerable discrepancy from the measured values for low flow rates. Main source of the difference is the leakage flow of pump strongly affecting the performance of pump. A simple correlation was proposed using calculated leakage flows through the simplified passage. One dimensional analysis were made for the recirculating flow and angular momentum transfer using calculated three dimensional data base.

Investigation on the Internal Flow Characteristics of the Low Specific Speed Centrifugal Pump with Circular Casing

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.404-412
    • /
    • 2008
  • As a suitable volute configuration in the range of low specific speed, circular casing is suggested in this study. The internal flows in a centrifugal pump with the circular and spiral casings are measured by PIV and analyzed by CFD. The results show that the head and efficiency of the pump by a circular casing of very small radius are almost same as those by the spiral casing. Even at the best efficiency point, the internal flow of the pump by circular casing is asymmetric, and vortex and strong secondary flow occurs in the impeller passage. The radial velocity becomes higher remarkably only near the region of the discharge throat. The flow in the impeller outlet is strongly controlled by the circular casing because the velocity distribution almost does not affected by the position of the impeller blades.

터보펌프 인듀서의 유동 및 성능의 수치적 평가 (Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers)

  • 심창열;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

Experimental Study on the Mean Flow Characteristics of Forward-Curved Centrifugal Fans

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1728-1738
    • /
    • 2001
  • Measurements have been made in an automotive HVAC b1ower for two different centrifugal fans. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small blower casing. Mean velocities and pressure have been measured using a miniature five-hole probe and a pressure scanning unit connected to an online data acquisition system. First, we obtained the fan performance versus flow rates showing a significant attenuation of unstable nature achieved with the new fan rotor in the surging operation range. Second, aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage for different fan operating conditions. The measurements stowed that performance coefficients are strongly influenced by flow characteristics at the throat region. The main flow features ware common in both fans, but improved performance is achieved with tole new fan rotor, particularly in lower flow rate legions. Based on the measured results, design improvements were carried out in an acceptable operation range, which gave considerable insight into what features of flow behavior ware most important.

  • PDF