DOI QR코드

DOI QR Code

Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade

터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실

  • Jeong, Jae Sung (Dept. of Mechanical Engineering, Kumoh Nat'l. Institute of Technology) ;
  • Bong, Seon Woo (Dept. of Mechanical Engineering, Kumoh Nat'l. Institute of Technology) ;
  • Lee, Sang Woo (Dept. of Mechanical Engineering, Kumoh Nat'l. Institute of Technology)
  • 정재성 (금오공과대학교 기계공학과) ;
  • 봉선우 (금오공과대학교 기계공학과) ;
  • 이상우 (금오공과대학교 기계공학과)
  • Received : 2017.01.18
  • Accepted : 2017.05.15
  • Published : 2017.08.01

Abstract

Three-dimensional flow characteristics within a high-acceleration first-stage turbine vane passage has been investigated in a newly-built vane cascade for propulsion. The result shows that there is a strong favorable pressure gradient on the vane pressure surface. On its suction surface, however, there exists not only a much stronger favorable pressure gradient than that on the pressure surface upstream of the mid-chord but also a subsequent adverse pressure gradient downstream of it. By employing two different oil-film methods with upstream coating and full-coverage coating, a four-vortex model horseshoe vortex system can be identified ahead of each leading edge in the cascade, and the separation line of inlet boundary layer flow as well as the separation line of re-attached flow is provided as well. In addition, basic flow data such as secondary flow, aerodynamic loss, and flow turning angle downstream of the cascade are obtained.

본 연구에서는 항공기 추진용 가스터빈 엔진의 고증속 터빈 제1단 정익 익렬을 새로이 구축하고, 이 정익의 기본 유동 특성에 대하여 연구하였다. 그 결과 본 연구에서 도입된 정익의 압력면에는 강한 순압력구배가 존재하는 반면, 흡입면에는 앞전에서 미드코드 근처까지 압력면보다 훨씬 더 심한 순압력구배가 존재하고 그 이후 역압력구배가 존재하였다. 두 종류의 유막법을 적용한 유동의 가시화 실험을 통하여, 정익 앞전 상류 영역에 4와류모델 말발굽와류 시스템이 존재함을 확인하였고, 입구 경계층 유동의 박리선과 재부착 유동의 박리선을 정확히 파악하였다. 이와 함께 이 고증속 정익 익렬 하류에서의 2차유동, 압력손실, 선회각, 등에 대한 데이터를 확보하였다.

Keywords

References

  1. Lee, S. W. and Kim, S. U., 2010, "Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison with Plane Tip Results: Part 1 - Tip Gap Flow Structure," Experiments in Fluids, Vol. 49, pp. 1039 1051. https://doi.org/10.1007/s00348-010-0848-6
  2. Lee, S. W. and Choi, M. Y., 2010, "Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison with Plane Tip Results: Part 2 - Aerodynamic Losses," Experiments in Fluids, Vol. 49, pp. 713-723. https://doi.org/10.1007/s00348-010-0849-5
  3. Lee, S. W., Cheon, J. H. and Zhang, Q., 2014, "The Effect of Full Coverage Winglets on Tip Leakage Aerodynamics over the Plane Tip in a Turbine Cascade," International Journal of Heat and Fluid Flow, Vol. 45, pp. 23-32. https://doi.org/10.1016/j.ijheatfluidflow.2013.11.006
  4. Cheon, J. H. and Lee, S. W., 2015, "Tip Leakage Aerodynamics over the Cavity Squealer tip Equipped with Full Coverage Winglets in a Turbine Cascade," International Journal of Heat and Fluid Flow, Vol. 56, pp. 60-70. https://doi.org/10.1016/j.ijheatfluidflow.2015.07.003
  5. Aslanidou, I., Rosic, B., Kanjirakkad, V. and Uchida, S., 2013, "Leading Edge Shielding Concept in Gas Turbines with Can Combustor," ASME Journal of Turbomachinery, Vol. 135, 021019.
  6. Lyall, M. E., King, P. and Sondergaard, R., 2013, "Endwall Loss and Mixing Analysis of a High Lift Low Pressure Turbine Cascade," ASME Journal of Turbomachinery, Vol. 135, 051006. https://doi.org/10.1115/1.4007801
  7. Saha, R., Mamaaev, B. I., Fridh, J., Laumert, B. and Fransson, T. H., 2014, "Influence of Prehistory and Leading Edge Contouring on Aero Performance of a Three-Dimensional Nozzle Guide Vane," ASME Journal of Turbomachinery, Vol. 136, 071014. https://doi.org/10.1115/1.4026076
  8. Lyall, M. E., King, P., Clark, J. P. and Sondergaard, R., 2014, "Endwall Loss Reduction of High Lift Low Pressure Turbine Airfoils using Profile Contouring - Part 1: Airfoil Design," ASME Journal of Turbomachinery, Vol. 136, 081005. https://doi.org/10.1115/1.4025951
  9. Saha, R., Fridh, J., Fransson, T. H., Mamaev, B. I., Annerfeldt, M. and Utriainen, E., 2014, "Shower Head and Trailing Edge Cooling Influence on Transonic Vane Aero Performance," ASME Journal of Turbomachinery, Vol. 136, 111001. https://doi.org/10.1115/1.4028024
  10. Treaster, A. L. and Yocum, A. M., 1979, "The Calibration and Application of Five-Hole probes," ISA Transactions, Vol. 18, pp. 23-34.
  11. Abernethy, R. B., Benedict, R. P. and Dowdell, R. B., 1985, "ASME Measurement Uncertainty," ASME Journal of Fluids Engineering, Vol. 107, pp. 161-164. https://doi.org/10.1115/1.3242450
  12. Baker, C. J., 1980, "The Turbulent Horseshoe Vortex," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 6, pp. 9-23. https://doi.org/10.1016/0167-6105(80)90018-5
  13. Eckerle, W. A. and Langston, L. S., 1986, "Horseshoe Vortex Formation Around a Cylinder," ASME Paper No. 86-GT-246.