• Title/Summary/Keyword: Pass Image

Search Result 395, Processing Time 0.022 seconds

Application of Curve Interpolation Algorithm in CAD/CAM to Remove the Blurring of Magnified Image

  • Lee Yong-Joong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.115-124
    • /
    • 2005
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the problems. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the problems. As a result. the nearest neighbor interpolation. which is the most frequently applied algorithm for the existing image interpolation algorithm. shows that the identification of a magnified image is not possible. Therefore. this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson's curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter. this study will develop an interpolation algorithm that has an excel lent improvement for the boundary of the image and continuous and flexible property by using the NURBS. Ferguson's complex surface. and Bezier surface used in CAD/CAM engineering based on. the results of this study.

  • PDF

Improvement of Angiogram Quality Using by High Pass Filter (고역통과필터를 이용한 혈관조영상의 화질 개선)

  • Park, Minju;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.301-307
    • /
    • 2014
  • In this study, an image acquired by the DSA(Digital Subtraction Angiography) system that is configured to configure the algorithm for high pass filtering algorithm experiments to improve the quality of angiography methods proposed. high pass filter is a high-frequency components pass through the filter, blocking low-frequency components. Part of the boundary line and contour of the organ corresponds to the high-frequency component is a high-frequency component of a medical image. Therefore, the high pass filter is also used for detection of the boundary line, but is also used for the high frequency enhancement. It was able to be analyzed by the proposed algorithm, to improve the quality of the angiography. Found out that the expression of the target site stand out clearly. The quality of the DSA system proposed in the wrong diagnosis software can be used to reduce, it is possible to develop and will further improve the accuracy of the treatment.

An Image Compression Algorithm Using the WDCT (Warped Discrete Cosine Transform) (WDCT(Warped Discrete Cosine Transform)를 이용한 영상 압축 알고리듬)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2407-2414
    • /
    • 1999
  • This paper introduces the concept of warped discrete cosine transform (WDCT) and an image compression algorithm based on the WDCT. The proposed WDCT is a cascade connection of a conventional DCT and all-pass filters whose parameters can be adjusted to provide frequency warping. In the proposed image compression scheme, the frequency response of the all-pass filter is controlled by a set of parameters with each parameter for a specified frequency range. For each image block, the best parameter is chosen from the set and is sent to the decoder as a side information along with the result of corresponding WDCT computation. For actual implementation, the combination of the all-pass IIR filters and the DCT can be viewed as a cascade of a warping matrix and the DCT matrix, or as a filter bank which is obtained by warping the frequency response of the DCT filter bank. Hence, the WDCT can be implemented by a single matrix computation like the DCT. The WDCT based compression, outperforms the DCT based compression, for high bit rate applications and for images with high frequency components.

  • PDF

THE EFFICIENT METHOD TO DETECT DEFECTIVE DETECTOR OF THE SWIR BAND OF SPOT 4

  • Jung Hyung-sup;Kang Myung-Ho;Lee Yong-Woong;Won Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.130-133
    • /
    • 2005
  • This paper presents the efficient method to detect the defective detectors of the SWIR band of SPOT 4. The key of this method are to flatten the baseline of the data using high pass band filter instead of differentiation. This method is made up six steps. First step is to apply image enhancement techniques to enhance the lines imaged by defective detector and improve the quality of an image. Second step is processed by summing the enhanced image in line direction. These summed data have the peaks that represent the defective detectors and the curved baseline characterized by the reflectivity of Earth surface. In order to exactly detect these peaks, third step is to flatten the curved baseline using high pass filtering in the frequency domain. In fourth step, the data with flat baseline is normalized to have zero mean and unity standard deviation. In fifth step, the defective detectors are detected using $99.9\%$ confidence interval. Finally, after removing the detected ones in summed data, the steps from third to five are iterated. Three SPOT 4 images, which have different reflectivity of Earth surface and different sensor, were used to validate this method. The overall accuracy of detection for three images was $97.9\%$. This result shows that this method can detect efficiently the lines made by defective detectors.

  • PDF

Extraction of Characteristics of Concrete Surface Cracks

  • Ahn, Sang-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.126-130
    • /
    • 2007
  • This paper proposes a method that automatically extracts characteristics of cracks such as length, thickness and direction, etc., from a concrete surface image with image processing techniques. This paper, first, uses the closing morphologic operation to adjust the effect of light extending over the whole concrete surface image. After applying the high-pass filtering operation to sharpen boundaries of cracks, we classify intensity values of the image into 8 groups and remove intensity values belong to the highest frequency group among them for the removal of background. Then, we binarize the preprocessed image. The auxiliary lines used to measure cracks of concrete surface are removed from the binarized image with position information extracted by the histogram operation. Then, cracks broken by the removal of background are extended to reconstruct an original crack with the $5{\times}5$ masking operation. We remove unnecessary information by applying three types of noise removal operations successively and extracts areas of cracks from the binarized image. At last, the opening morphologic operation is applied to compensate extracted cracks and characteristics of cracks are measured on the compensated ones. Experiments using real images of concrete surface showed that the proposed method extracts cracks well and precisely measures characteristics of cracks.

A Study on the Image Restoration in the Defocussed Image (Defocussed된 화상의 복#에 관한 연구)

  • 이명종;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The point spread function of defocussed image is known as two dimensional function, one of rectangular type and Gaussian type function and etc, and the defocussed image can be modeled as the convolved output between original image and the supposed PSF. But, in .case of analog method using the scanning line of TV camera, one dimensional Process can be effective, and it was shown thats the defocussed image can be analyzed as the convolved output betlween the original image and the pule with finite width in the horizontal irection. And uslng TV camera and a analog compound high pass filter, the restoration experiment Is matte and we have got some pictures with remarked improvements.

  • PDF

DIGITAL IMAGE PROCESSING AND CLINICAL APPLICATION OF VIDEODENSITOMETER (실험적으로 제작한 Videodensitometer의 디지털 영상처리와 임상적 적용에 관한 연구)

  • Park Kwan-Soo;Lee Sang-Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.2
    • /
    • pp.273-282
    • /
    • 1992
  • The purpose of this study was to propose the utility which was evaluated the digital image processing and clinical application of the videodensitomery. The experiments were performed with IBM-PC/16bit-AT compatible, video camera(CCdtr55, Sony Co., Japan), an color monitor(MultiSync 3D, NEC, Japan) providing the resolution of 512×480 and 64 levels of gray. Sylvia Image Capture Board for the ADC(analog to digital converter) was used, composed of digitized image from digital signal and the radiographic density was measured by 256 level of gray. The periapical radiograph(Ektaspeed EP-21, Kodak Co., U. S. A) which was radiographed dried human mandible by exposure condition of 70 kVp and 48 impulses, was used for primary X-ray detector. And them evaluated for digitzed image by low and high pass filtering, correlations between aluminum equivalent values and the thickness of aluminum step wedge, aluminum equivalent values of sound enamel, dentin, and alveolar bone, the range of diffuse density for gray level ranging from 0 to 255. The obtained results were as follows: 1. The edge between aluminum steps of digitized image were somewhat blurred by low pass filtering, but edge enhancement could be resulted by high pass filtering. Expecially, edge enhancement between distal root of lower left 2nd molar and alveolar lamina dura was observed. 2. The correlation between aluminum equivalent values and the thickness of aluminum step wedge was intimated, yielding the coefficient of correlation r=0.9997(p<0.00l), the regression line was described by Y=0.9699X+0.456, and coefficient of variation amounting to 1.5%. 3. The aluminum equivalent values of sound enamel, dentin, and alvolar bone were 15.41㎜, 12.48㎜, 10.35㎜, respectively. 4. The range of diffuse density for gray level ranging from 0 to 255 was wider enough than that of photodenstiometer to be within the range of 1-4.9.

  • PDF

Algorithm of adaptive edge enhancement to improve image visibility at mobile phone camera (모바일 폰 카메라의 이미지 선명도 향상을 위한 적응적 윤곽선 강조 알고리즘)

  • Kim, Kyung-Rin;Choi, Won-Tae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 2008
  • In this paper, we proposed an algorithm of edge enhancement to improve image visibility of mobile phone camera. For naturally edge enhancement, we grasps edge characteristic in image and applied to the most appropriate enhancement value adaptively about each characteristics. Namely, It applies 2D high pass filter where in the edge characteristics which judge in the first In compliance with the edge condition which is subdivided more with secondary it will be able to apply the process which able to adaptive edge enhancement to improve image visibility. It joins in and it is an existing algorithm that simply a lies 2D high pass filter where and it is identical in the image whole it will be able to improve the side effects of ringing actual condition etc. It considers the effectiveness of the hardware resource with the hardware of the algorithm which is developed and algorithm the maximum simply, it developed and simulation of the algorithm which is proposed it led and algorithm of existing and it compared and is improved the result which it confirmed.

  • PDF

Deep survey using deep learning: generative adversarial network

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • There are a huge number of faint objects that have not been observed due to the lack of large and deep surveys. In this study, we demonstrate that a deep learning approach can produce a better quality deep image from a single pass imaging so that could be an alternative of conventional image stacking technique or the expensive large and deep surveys. Using data from the Sloan Digital Sky Survey (SDSS) stripe 82 which provide repeatedly scanned imaging data, a training data set is constructed: g-, r-, and i-band images of single pass data as an input and r-band co-added image as a target. Out of 151 SDSS fields that have been repeatedly scanned 34 times, 120 fields were used for training and 31 fields for validation. The size of a frame selected for the training is 1k by 1k pixel scale. To avoid possible problems caused by the small number of training sets, frames are randomly selected within that field each iteration of training. Every 5000 iterations of training, the performance were evaluated with RMSE, peak signal-to-noise ratio which is given on logarithmic scale, structural symmetry index (SSIM) and difference in SSIM. We continued the training until a GAN model with the best performance is found. We apply the best GAN-model to NGC0941 located in SDSS stripe 82. By comparing the radial surface brightness and photometry error of images, we found the possibility that this technique could generate a deep image with statistics close to the stacked image from a single-pass image.

  • PDF

TFT-LCD Defect Detection Using Double-Self Quotient Image (이중 SQI를 이용한 TFT-LCD 결함 검출)

  • Park, Woon-Ik;Lee, Kyu-Bong;Kim, Se-Yoon;Park, Kil-Houm
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.604-608
    • /
    • 2008
  • The TFT-LCD image allows non-uniform illumination variation and that is one of main difficulties of finding defect region. The SQI (self quotient image) has the HPF (high pass filter) shape and is used to reduce low frequency-lightness component. In this paper, we proposed the TFT-LCD defect-enhancement algorithm using characteristics of the SQI, that is the SQI has low-frequency flattening effect and maintains local variation. The proposed method has superior flattening effect and defect-enhancement effect compared with previous the TFT-LCD image preprocessing.