• Title/Summary/Keyword: Parts-based Feature Extraction

Search Result 60, Processing Time 0.025 seconds

Exploiting Color Segmentation in Pedestrian Upper-body Detection (보행자 상반신 검출에서의 컬러 세그먼테이션 활용)

  • Park, Lae-Jeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.181-186
    • /
    • 2014
  • The paper proposes a new method of segmentation-based feature extraction to improve performance in pedestrian upper-body detection. General pedestrian detectors that use local features are often plagued by false positives due to the locality. Color information of multi parts of the upper body is utilized in figure-ground segmentation scheme to extract an salient, "global" shape feature capable of reducing the false positives. The performance of the multi-part color segmentation-based feature is evaluated by changing color spaces and the parameters of color histogram. The experimental result from an upper-body dataset shows that the proposed feature is effective in reducing the false positives of local feature-based detectors.

Skin Color Based Facial Features Extraction

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.351-354
    • /
    • 2011
  • This paper discusses on facial features extraction based on proposed skin color model. Different parts of face from input image are segmented based on skin color model. Moreover, this paper also discusses on concept to detect the eye and mouth position on face. A height and width ratio (${\delta}=1.1618$) based technique is also proposed to accurate detection of face region from the segmented image. Finally, we have cropped the desired part of the face. This exactly exacted face part is useful for face recognition and detection, facial feature analysis and expression analysis. Experimental results of propose method shows that the proposed method is robust and accurate.

Optimized patch feature extraction using CNN for emotion recognition (감정 인식을 위해 CNN을 사용한 최적화된 패치 특징 추출)

  • Irfan Haider;Aera kim;Guee-Sang Lee;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.510-512
    • /
    • 2023
  • In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.

A feature extraction algorithm for process planning

  • Park, Hwa-Gyoo;Kim, Hyun;Oh, Chi-Jae;Baek, Jong-Myong;Go, Young-Chel
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.41-44
    • /
    • 1997
  • This paper is to provide an integration approach between design and process planning for mechanical parts, using feature recognition. We develop a method to extract each individual feature of an object from 3D modeling data using face-edge graph based algorithm and then propose an approach to recognize the volumic form features using heuristic rules. we demonstrate the proposed approaches are effective for such basic shapes as pocket, slot, through hole, etc.

  • PDF

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Combination of Feature-Based Extraction Process and Manufacturing Resource for Distributed Process Planning (분산공정계획을 위한 특징형상 기반 추출 공정 및 가공자원 조합)

  • Oh, Ick Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • Process planning can be defined as determining detailed methods by which parts can be manufactured from the initial to the finished stage. Process planning starts with determining the manufacturing process based on the geometric shape of the part and the machines and tools required for performing this process. Distributed process planning enables production planning to be performed easily by combining the extracted process and various manufacturing resources such as operations and tools. This study proposes an algorithm to determine the process for a feature-based model and to combine manufacturing resources for the process and implements a distributed process planning system.

Conditional Moment-based Classification of Patterns Using Spatial Information Based on Gibbs Random Fields (깁스확률장의 공간정보를 갖는 조건부 모멘트에 의한 패턴분류)

  • Kim, Ju-Sung;Yoon, Myoung-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1636-1645
    • /
    • 1996
  • In this paper we proposed a new scheme for conditional two dimensional (2-D)moment-based classification of patterns on the basis of Gibbs random fields which are will suited for representing spatial continuity that is the characteristic of the most images. This implementation contains two parts: feature extraction and pattern classification. First of all, we extract feature vector which consists of conditional 2-D moments on the basis of estimated Gibbs parameter. Note that the extracted feature vectors are invariant under translation, rotation, size of patterns the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on 486 66Mhz PC. Experiments reveal that the proposed scheme has high classification rate over 94%.

  • PDF

3D Mesh Model Exterior Salient Part Segmentation Using Prominent Feature Points and Marching Plane

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1418-1433
    • /
    • 2019
  • In computer graphics, 3D mesh segmentation is a challenging research field. This paper presents a 3D mesh model segmentation algorithm that focuses on removing exterior salient parts from the original 3D mesh model based on prominent feature points and marching plane. To begin with, the proposed approach uses multi-dimensional scaling to extract prominent feature points that reside on the tips of each exterior salient part of a given mesh. Subsequently, a set of planes intersect the 3D mesh; one is the marching plane, which start marching from prominent feature points. Through the marching process, local cross sections between marching plane and 3D mesh are extracted, subsequently, its corresponding area are calculated to represent local volumes of the 3D mesh model. As the boundary region of an exterior salient part generally lies on the location at which the local volume suddenly changes greatly, we can simply cut this location with the marching plane to separate this part from the mesh. We evaluated our algorithm on the Princeton Segmentation Benchmark, and the evaluation results show that our algorithm works well for some categories.

A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction (NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.46-54
    • /
    • 2006
  • Recently, the important of a personal identification is increasing according to expansion using each on-line commercial transaction and personal ID-card. Although a personal ID-card embedded RFID(Radio Frequency Identification) tag is gradually increased, the way for a person's identification is deficiency. So we need automatic methods. Because RFID tag is vary small storage capacity of memory, it needs effective feature extraction method to store personal biometrics information. We need new recognition method to compare each feature. In this paper, we studied the face verification system using Hippocampal neuron modeling algorithm which can remodel the hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature vector of the face images very fast. and construct the optimized feature each image. The system is composed of two parts mainly. One is feature extraction using NMF(Non-negative Matrix Factorization) and LDA(Linear Discriminants Analysis) mixture algorithm and the other is hippocampal neuron modeling and recognition simulation experiments confirm the each recognition rate, that are face changes, pose changes and low-level quality image. The results of experiments, we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to the existing method.

Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

  • Haiqin Tang;Ruirui Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.842-857
    • /
    • 2023
  • Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speech and emoticons without comprehending users' emotional inclinations and grasping moral nuances. This study proposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the model employs a combined stop-word list and word2vec for word vectorization. To mitigate local information loss, the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM is utilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments are categorized using a classification layer. Given the binary classification task at the output layer and the numerous hidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findings demonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a 1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to the individual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9% in precision, recall, and F1 values.