• 제목/요약/키워드: Partly fixed condition

검색결과 3건 처리시간 0.021초

캡 플레이트로 단부 보강한 춤이 깊은 데크의 시공중 처짐성능평가 (Deflection Evaluation of the Constructing-load Carrying Capacity for Deep Decking Floor System Reinforced with Both Ends Cap Plates)

  • 전상현;경제환;김영호;최성모;양일승
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.155-167
    • /
    • 2015
  • 춤이 깊은 데크를 6m 이상 장스팬 바닥에 사용할 경우에는 시공단계에서 데크의 발생하는 많은 처짐에 의한 작업자 및 시공안전을 고려하여 가설지주를 사용하는 것이 통상적이었다. 그러나 시공안전은 확보하였지만, 가설지주의 설치는 작업자의 통로제한, 공간의 협소, 능률의 감소 등으로 시공성의 문제가 발생한, 이는 춤이 깊은 데크는 상부 개방인 골 형태로 인한 벌어짐이나 박판으로 인한 웨브크리플링, 데크의 상부 플렌지의 국부처짐 등의 불안정성 문제가 발생할 수 있고, 이로 인해 개방형 데크의 횡-비틀림 좌굴과 같은 구조적 문제가 발생할 수 있다. 본 연구는 시공단계 동안 작용하중에 대한 춤이 깊은 데크의 제한 처짐 값을 제안하며, 장스팬의 구조안정성을 확보하고자 춤이 깊은 데크의 단부에 캡플레이트로 보강한 후 시공단계하중을 모래 재하 방법으로 실물실험 제작하여 실험을 실험하였다. 실험결과 개선안 캡플레이트 적용 유무에 따라 발생 처짐량이 최대 1/5 감소하였고, 모든 특히 단부를 연속화한 실험체의 경우, 처짐이 국내 규준과 제안 처짐 값(L/180, 30mm)을 만족하였다.

Glass fiber 강화 복합레진을 사용한 3본 고정성 국소의치의 개념 설계 연구 (Conceptual Design of the Three Unit Fixed Partial Denture with Glass Fiber Reinforced Hybrid Composites)

  • 나경희;이규복;조광헌
    • 구강회복응용과학지
    • /
    • 제18권3호
    • /
    • pp.145-155
    • /
    • 2002
  • 본 연구에서는 knitted glass fabric 강화 레진에 대한 치과보철소재로서의 적용가능성을 평가하기 위한 목적으로, 가장 높은 수준의 교합하중이 작용하게 되는 구치부 3본 고정성국소의치에 이 재료를 사용하는 경우에 대해 해석을 수행하였다. 우선 구치부3본 고정성국소의치에 대해 knitted glass fabric 강화 레진을 적용한 두 가지 설계 개념을 상정하였고, 각 설계형상에 대한 유한요소해석을 하였다. 강도 평가를 위해서75N의 생리적인 반복 수직 교합 하중 조건을 부여, 보철물에 유도되는 국소응력을 피로강도측면에서 고찰하였다. 각각의 설계에는 knitted glass fabric을 모재로 하고 보강재로 unidirectional 형의 glass 복합재가 사용되었다. 본 연구에서 개념설계 된 두 가지의 3본 고정성국소의치는 수직 교합 하중 75N 에 대해 충분한 강성과 강도를 가진 것으로 분석되었다. 가공치와 knitted caps사이의 연결 부위에서 국소적인 응력 집중이 관찰되었으나 그 크기는 재료의 피로강도 범위 이내였으며 국소적인 설계변경을 통하여 응력분포를 더욱 개선할 수 있을 것으로 추정하였다. 본 연구를 통해 knitted glass fabric 은 새로운 치과 보철 소재로서의 그 가능성이 기대된다.

오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 - (Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass -)

  • 이지영;김철환;성용주;남혜경;박형훈;권솔;박동훈;주수연;임현택;이민석;김세빈
    • 펄프종이기술
    • /
    • 제48권2호
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.