• 제목/요약/키워드: Particulate reinforced materials

검색결과 39건 처리시간 0.025초

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

TiC 입자강화 Mg 복합재료에 있어서 입자 분산거동 및 기계적 성질에 미치는 합금원소의 영향 (Effect of Alloying Elements on Particulate Dispersion Behavior and Mechanical Properties in TiC Particulate Reinforced Magnesium Matrix Composites)

  • 임석원;장융랑;박용진
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.240-247
    • /
    • 1994
  • TiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effect of alloying elements on TiC particulate dispersion into molten magnesium and mechanical properties were investigated. The incorporation time is defined as the time required for dispersion of solid particles into molten metal. The incorporation time of TiC particles into molten pure magnesium was remarkably shorter and the particulated dispersion was more uniform than that of pure aluminum which was reported previously. The incorporation time was, prolonged by the addition of Al, Bi, Ca, Ce, Pb, Sn or Zn. The tensile strength increased and elongation decreased by the addition of Cu or Sn into the matrices and composites. Although, the tensile strength of the matrices and composites increased by alloying with Ca or Ce, the maximum elongation was observed at a content of about 1% for the matrices. By alloying with Zn, the tensile strength increased for the matrices and composites, but the elongation of the matrices increased. The pure magnesium and its alloy matrix composites reinforced with 20vol% TiC have the tensile strength of about 400MPa. This value is compared with the tensile strength of SiC whisker reinforced magnesium matrix composites fabricated by liquid infiltration method at the same volume fraction. There fore, the melt strirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

초음파의 에너지속도와 위상속도의 주행시간 동시성과 이방성 재료의 탄성계수 결정 (Equivalence of the times of flight by ultrasonic energy and phase velocities and determination of the elastic constants of anisotropic materials)

  • 정현조
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.95-103
    • /
    • 1994
  • The purpose of this paper is to provide the experimenters who use the oblique incidence ultrasonic method for anisotropic elastic constants measurement eith some useful relations. In particular, the equivalence of the times of flight by the energy ad phase velocities, which is key to the oblique incidence method, is proved explicitly. This equivalence greatly simplifies the analysis of immersion measurement results. In oredr to correctly measure the transit time of an immersed sample using the oblique incidence, the receiving transducer should be shifted laterally, and an expression in given for this shift. A method for determining all nine elastic constants of an orthotropic material is briefly described and the measurement results are listed for SiC particulate reinforced A1 matrix composites.

  • PDF

입자분산강화 알루미늄 복합재료의 고온거동에 관한 연구 (High Temperature Deformation Behaviour of Particulate Reinforced Aluminium Composites)

  • 권혁천;윤의박
    • 한국재료학회지
    • /
    • 제5권7호
    • /
    • pp.765-774
    • /
    • 1995
  • 입자강화 알루미늄 복합재료의 고온거동을 조사하기위하여, 온도 623K~823K에서 $10^{-2}$ ~1.0 S$^{-1}$ 변형속도로 열간 압축 가공 시험을 행하여 복합재의 고온유동응력에 미치는 강화입자의 첨가량, 강화입자의 종류 및 크기와 변형속도 및 변형온도 등의 영향을 조사하였다. 강화입자의 체적분율이 증가함에 따라서 고온유동음력은 증가하였으나 항복점에서의 차이가 변형량이 증가되어도 그대로 유지되고 있었다. 변형속도 민감도(m)로 볼때 SiCp첨가된 복합재가 A1$_2$O$_3$p를 첨가한 복합재보다 비교적 균일하게 가공할 수 있음을 알 수 있었으며, 823K에서 최적변형속도는 0.1Sec$^{-1}$ 이었다. 변형에 필요한 활성화 에너지는 A6061기지금속이 290KJmole$^{-1}$, A6061-20vo1% SiCp = 327KJmo1e$^{-1}$, A6061-20vo1% $Al_2$O$_3$= 531KJmole$^{-1}$이었다. 이것은 알루미늄의 자기활성화에너지 138KJmo1e$^{-1}$보다 큰 값으로 A1$_2$O$_3$강화복합재료가 SiCp 강화 복합재료보다 열간가공이 어렵다는 것을 나타내는 것이다.

  • PDF

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

반응생성 합성에 의한 (TiB+TiC) 입자강화 Ti기 복합재료의 미세조직 및 인장특성 평가 (Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites)

  • 최봉재;김영직
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.780-789
    • /
    • 2010
  • The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.

용탕교반법에 의한 SiC 입자강화 Mg기 복합재료의 기계적 특성 (Mechanical Properties of SiC Particulate Reinforced Mg Matrix Composites Fabricated by Melt Stirring Method)

  • 임석원;장융랑;박용진
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.441-449
    • /
    • 1993
  • SiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effet of several factors on mechanical properties and the efficiency of melt stirring method from the viewpoint of these properties were investigated. The tensile strength increased and the elongation decreased with decrease of the particle size or the increase of the paticulate volume fraction for pure magnesium matrix and Mg-5%Zn alloy matrix composites. A longer stirring time improved the tensile strength of these composites. The tensile strength of Mg-5%Ca alloy matrix composites which shows no uniform paticulate distribution was a little lower than that of matrix alloy. Rapid solidification rate is preferred for the improved tensile strength of these composites. The pure magnesium matrix and Mg-5%Zn alloy matrix composites have tensile strength of about 400MPa. This value agrees with the tensile strength of some magnesium matrix composites fabricated by liquid infiltration method or powder metallurgy method at the same volume fraction of reinforcements of whisker or particle. Therefore, the melt stirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

초음파와 AE기법을 이용한 금속복합재료의 피로손상진전 평가 (A Study on Fatigue Damage Accumulation of MMC using Ultrasonic Wave and Acoustic Emission)

  • 이진경;이준현
    • Composites Research
    • /
    • 제13권4호
    • /
    • pp.1-10
    • /
    • 2000
  • SiC가 강화된 금속복합재료는 기존의 금속재료에 비하여 비탄성계수와 비강도가 높기 때문에 자동차 및 항공산업에 많은 응용이 기대되고 있다. 금속복합재료의 파손기구는 적용된 하중에 의한 미시적 손상의 축적에 의해 많은 영향을 받기 때문에 금속복합재료의 광범위한 응용을 위해서는 금속복합재료가 반복 하중을 받을 때 미시적 파손기구를 이해하는 것이 대단히 중요하다. 따라서 본 연구에서는 SiCp/A356 금속복합재료의 미시적 손상 축적을 모니터링 하기 위하여 초음파와 음향방출기법을 적용하였다. 반복하중의 증가에 따라 초음파의 속도와 감쇠의 변화는 각 미시적 손상기구에 따라 3영역으로 나눌 수 있었다. 또한 각 영역에서 발생하는 AE 신호의 특징은 초음파의 속도 및 감쇠 변화와 비교, 분석되었다.

  • PDF

단섬유 보강 복합재료의 트라이볼로지 특성 (Tribological characteristics of short fiber reinforced composites)

  • 윤재륜
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1238-1245
    • /
    • 1988
  • 본 연구에서는 단섬유가 첨가된 복합재료의 마찰 및 마멸특성에 대하여 보고 하고자 하며, 최근 공업용 고분자(engineering plastic)로 중오시되고 있는 PAI를 모 재로 하여 탄소섬유(graphite fiber), 유리섬유(glass fiber), TiO$_{2}$ 등이 첨가된 복합재료의 트라이볼로지(tribology) 특성에 대하여 고찰하고자 한다. 본 연구에서 사용된 복합재료에 포함된 단섬유들은 일정한 배열방향이 없이 마구잡이로 분포되어 있으며, 섬유특성에 따라 마멸메카니즘에 큰 차이가 있음을 본 연구 결과를 통하여 알 수 있다.