• Title/Summary/Keyword: Particulate matters (PM)

Search Result 228, Processing Time 0.028 seconds

A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk;Oh, Sang-Ki;Kang, Kum-Won;Ahn, Kyun-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

A Study on the Emission Factors of Air Pollutants for the Melting Furnaces of the Iron and Steel Industry (철강산업 용융로의 대기오염물질 배출계수 산정 연구)

  • 석광설;방선애;홍지형;이석조;김대곤;이대균;허정숙;이은정
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.571-578
    • /
    • 2004
  • The purpose of this study is to estimate of emission factors of the air pollutants for the melting furnaces for the iron and steel industry. The result of this study is able to obtaine the emission factor of particulate matters (PM), sulfur dioxide. nitrogen oxides for melting furnace. The emission factors of each pollutants were as follows : - the emission factor varied between 6.13E-03~6.12E-01 kg/ton for PM -1.59E-01~2.45E+00kg/ton for $SO_2$ - 6.82E-02~6.88E-01 kg/ton for NOx, respectively. Analysis of the differences in the emission factors of ours and U.S. EPA's yielded the following results for the Wilcoxon method : p>0.05. The statistical analysis showed no differences in the our emission factors and U.S. EPA's

Formation Characteristics of PM and SOF by Spray Combustion of Marine Heavy Fuel Oil

  • Kim, Houng-Soo;Murakami, T.;Nishida, Osami;Fujita, H.;Harano, W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.292-299
    • /
    • 2004
  • This study is intended to check a temperature of the flame to raise by burning A heavy oil in a boiler. to measure the concentration of DS and SOF after collecting the PM(Particulate Matters). and to analyze the components ingredients of SOF by G.C Mass for presupposing the generation of particulate matters(soot). It is thought that the methyl(CH3) of the cyclic compound is changed to the materials of 2 cycles and 3 cycles after becoming CH by dehydrogenation and also mixing with the CH of a chain compound. form H-$\cdot$C=C$\cdot$-H that is mentioned before. in order to become Polycyclic Aromatic Hydrocarbon.

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song;Junhwan Jeong;Jin Uk Ha;Daedong Park;Gyeongchan Ryu;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.

Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea (서울지역 장기간 강수와 미세먼지의 특성 분석에 기반한 미세먼지 세정효과)

  • Suji Han;Junshik Um
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.367-385
    • /
    • 2023
  • The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

Emission Characterization of Particulate Matters According to the Types of Wastes from Industrial Waste Incinerator (산업폐기물 소각시설에서 폐기물 유형에 따른 입자상물질의 배출특성)

  • Park, Jeong-Ho;Suh, Jeong-Min;Jo, Jeong-Gu;Ryu, Jae-Yong;Han, Seong-Jong
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1225-1230
    • /
    • 2007
  • The emissions characteristics of particulate matters(PM) according to the types of wastes from industrial waste incinerator of 800 kg/hr treatment capacity were investigated. For this study, the incinerate waste are as follows; waste resin, waste wood, waste urethane, waste gunny, and waste paper. The particulate samples were collected to be emitted in stack and air pollution control(both cyclone and bag filter). In stack, the concentrations of PM were in the range of 2.61 to $26.51 mg/Sm^3$ and the major chemical species were C, Si, Cl, K, Na, Ca in all the wastes. In cyclone fly ash, the mean content of heavy metal were in the order of Fe > Zn > Pb > Cu > Mn > Cr > Ni > Cd > As > Hg and the heavy metal content of waste resin were Zn 34,197.5 mg/kg, Fe 27,587.6 mg/kg, Pb 6,055.8 mg/kg, respectively. In bag filter fly ash, the mean content of heavy metal were in the order of Zn > Pb > Fe > Cu > Mn > Cd > Cr > Ni > As > Hg and the heavy metal content of waste wood were Pb 36,405.2 mg/kg, Fe 15,762.9 mg/kg, Cu 9,989.5 mg/kg, Cd 2,230.1 mg/kg, respectively. Comparing the heavy metal content of both cyclone and bag filter, in cyclone, the Cr, Fe, Ni content were higher than in bag filter and the Cd, Cu, Hg content were lower than in bag filter.

Distinct Oxidative Damage of Biomolecules by Arrays of Metals Mobilized from Different Types of Airborne Particulate Matters: SRM1648, Fine (PM2.5), and Coarse (PM10) Fractions

  • Park, Yong Jin;Lim, Leejin;Song, Heesang
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2013
  • This study was performed to examine the in vitro toxicities which are incurred due to the mobilization metals from standard reference material (SRM) 1648, fine ($PM_{2.5}$), and coarse ($PM_{10}$) particulate matter collected in Seoul metropolitan area. DNA single strand breaks of approximately 74% and 62% for $PM_{2.5}$ and for $PM_{10}$, respectively, were observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), as compared to the control by 2% without chelator or reductant. $PM_{2.5}$ induced about 40% more carbonyl formation with proteins in the presence of EDTA/ascorbate than $PM_{10}$. Therefore, more damage to biomolecules was incurred upon exposure to $PM_{2.5}$ than to $PM_{10}$. The treatment of a specific chelator, desferrioxamine, to the reaction mixture containing chelator plus reductant decreased the extent of damage to DNA to the level of the control, but did not substantially decrease the extent of damage to proteins. This suggests that different arrays of metals were involved in the oxidation of DNA and proteins.

Enhancement of filtration efficacy for particulate matters using β-glucan coated commercial masks

  • Muthuramalingam, Karthika;Kim, Young Mee;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.1-4
    • /
    • 2021
  • Ambient air pollution, in particular, particulate matter (PM) pollution imposes serious health concerns such as hospitalization and premature deaths, worldwide. While commercial breathing masks are in use for protection against this hazardous issue, yet their efficiency in filtering PM was not up to the par, besides several other discomforts such as poor breathability due to reduced air flow, sweat production etc. In this study, commercial face mask coated with β-glucan, a high molecular weight polymer is tested for its efficacy in filtering PM. Quantification of PM before and after filtration and microscopic observation (using scanning electron microscopy (SEM)) of the fabric used in filtering the dust pollutants (generated from wood chips and cigarette) showed that β-glucan coated fabric were significantly efficient in capturing PM (size of 10 and 2.5 ㎛ in diameter) than that of the untreated control fabric, wherein the former had filtration efficacy with fold increase of 11.6 and 2.6 towards capturing PM2.5 and PM10 respectively than the latter. Thus, β-glucan coated fabric was found to be effective in filtering PM.

Characteristics of Atmospheric Respirable Particulate Matters and Trace Elements within Industrial Complex and Residential Sites in an Industrial City (산업 도시의 산업단지 부지와 주거 지역의 대기 중 호흡성 분진과 구성 미량 원소의 특성)

  • Kim, Mo-Geun;Shin, Seung-Ho;Jo, Wan-Kuen
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.27-40
    • /
    • 2010
  • The current study was designed to scientifically evaluate the atmospheric particulate pollution in residences relative to their proximity to a Korean major iron/metal industrial complex (IMIC). This objective was achieved by measuring the concentrations and elemental composition of particulate matter with aerodynamic diameters equal to or less than 10 ${\mu}m$(PM10) in industrial ambient air from IMIC and residential ambient air with relative proximities to IMIC. The trace metals were analyzed using an inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The industrial mean values exceeded the Korean year/70-${\mu}g/m^3$ standard for PM10, whereas the residential mean values did not. However, the maximum residential values did exceed or were close to the Korean PM10 year standard. For individual elements, the ambient concentrations ranged widely from values in the order of a few $ng/m^3$ to thousands of $ng/m^3$. The residential mean mass concentrations in the PM10 measured in the present study were higher than or similar to those reported in earlier studies. This study suggests that residents in neighborhoods near the IMIC are exposedto elevated particulate levels compared to residents living further away from such a source.