• Title/Summary/Keyword: Particulate filter

Search Result 381, Processing Time 0.031 seconds

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.

The Study on Characteristics of Collected Filter as Analysis of Carbon in Airborne Particulate Matters by Elemental Analyzer (원소분석기를 사용한 부유입자상물질중의 탄소성분 분석시 포집여지의 특성에 관한 연구)

  • 황경철;조기철;최종욱
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 1995
  • In order to study of characteristics of collected filter as analysis of carbon in airborne particulate matters by Elemental Analyzer, quartz fiber filter and glass fiber filter were used. The results are followed as; There was no difference of confidence in collection rate of airborne particulate matters between quartz fiber filter and glass fiber filter. Airborne particulate matters were collected on both filters evenly and the use of quartz fiber filter is better than glass fiber filter as analysis of carbon by thermal method.

  • PDF

Fabrication and Characteristics of Diesel Particulate Filters(II) (Diesel Particulate Filter의 특성 및 제조방법(II))

  • Yang, Jin
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.191-202
    • /
    • 1998
  • The emission standards for diesel particulates have been continued to become tighter. This article reviews the pore and how to filtering characteristics and how to design the ceramic honeycomb filter which is generally used for diesel particulate filter. And the properties and fabrication methods of other particulate filters, i.e. ceramic fiber candle filter, ceramic foam filter, ceramic cross-flow filter and metal filter, are presented in this review. The results show that though the various filters have been developed and tested in the field, the more efforts are needed for the commercilaization of the diesel particulate filter.

  • PDF

Ceramic Diesel Particulate Filter Structure with Inclined Gas Paths

  • Hwang, Yeon;Kang, Dae-Sik;Choi, Hyoung-Gwon;Lee, Choong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.226-230
    • /
    • 2012
  • This paper presents a novel structure for a diesel particulate filter (DPF) with inclined gas paths, which was designed so that the gas paths offered a fluent flow of exhaust gases, and particulate matter (PM) was collected at pores formed in the body. The alumina porous filter was prepared by a conventional sintering process at $1200^{\circ}C$ for 2 h. Straight gas paths with $30^{\circ}$ of inclination from the gas flow direction were formed in the filter body. It is shown that this filter structure worked as a PM filter, in which 90.2% of soot filtration efficiency and 59.6 mbar of pressure drop were achieved.

A Study on the Performance of the Diesel Particulate Filter made of Porous Metal with Fe-based Fuel Additive (Fe 첨가제를 적용한 금속분말 필터의 포집 및 재생 특성에 관한 연구)

  • Park, S.H.;Chun, K.M.;Cho, G.B.;Jeong, Y.I.;Park, Y.L.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.802-806
    • /
    • 2001
  • Diesel particulate trap is the most reliable system to reduce the particulate matters from diesel engine. Filter is the core component of DPF and ceramic monolith type is dominantly used, which is expensive and fragile relatively at thermal shock. Porous metal filter, which has superior thermal characteristics and low cost, was tested in order to analyze the regeneration performance by using with ferrocene additive. This filter showed the 72% filtration efficiency, additives itself diminished 48% of PM from engine out emission, and final PM reduction ratio of 89% was achieved by DPF system with D-13 test mode.

  • PDF

Study on the Particulate Matter Filtration Characteristics of the Metal Foam Particulate Filter (메탈 폼 입자 필터의 GDI 엔진 입자상 물질 정화 특성에 대한 연구)

  • Jang, Wonwook;Myung, Cha-Lee;Lee, Jeongmion;Park, Simsoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.347-348
    • /
    • 2014
  • After-treatment system for gasoline direct injection engines should be considered due to the regulation standard for particle number emitted from spark ignition engine vehicles. A metal foam particulate filter, which is thought to be more proper for gasoline engines for its unique filtration and heat resistance characteristics, has been evaluated via engine dynamometer tests.

  • PDF

Development of diesel particulate filter for diesel locomotives (디젤기관차용 입자상물질 배출 저감필터 연구)

  • Cho, Young-Min;Kwon, Soon-Bark;Park, Duck-Shin;Jung, Woo-Sung;Lim, In-Gwon;Park, Eun-Young;Kim, Se-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.994-999
    • /
    • 2007
  • The particulate matters emitted by diesel locomotives cause serious air pollution in stations and railroad. There have been various attempt to reduce the air pollution from diesel bus or trucks. However, the air pollution from the diesel locomotives has been out of control because there has not any adaptable technology. In this study, a diesel particulate filter was developed and applied to the diesel locomotives. A 3,000 horsepower large-scale locomotive and a 1,500 horsepower middle-scale locomotive were used for the test of the filter. The particulate matter emissions before and after the treatment was monitored by a scanning mobility particle sizer and a dust monitor. As a result, it was observed that the particulate matters could be successfully removed from the emission gases by using the filter.

  • PDF

Development and Evaluation of an Inexpensive Weighing Chamber for Particulate Filters (미세먼지 여지의 무게 측정을 위한 저비용 계량챔버 개발 및 성능평가)

  • Jun-Hyun Park;Ho-Jin Lim
    • Journal of Environmental Science International
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2023
  • Filter and microbalance sensitivity in measuring fine particulate matter mass is greatly influenced by particulate properties and environmental factors. Temperature and humidity control inside a measuring chamber with a microbalance, and neutralization of static charges on filters are essential for consistent filter weighing. Commercial weighing chambers are expensive with a unit price of tens of millions won. This study developed an inexpensive weighing chamber for weighing fine particulate matter and evaluatedits weighing performance. A microbalance with 1 ㎍ precision was used to measure the weight of a filter. The microbalance was set in a transparent acrylic enclosure (100 × 60 × 65 cm3) equipped with temperature and humidity control equipments. Weighing performance of the chamber was examined using Teflon filters with or without different particulate sample types. Temperature and humidity were maintained at approximately 23.2±1.2 ℃ and 36.2±1.8℃ for 8 days, respectively.

Prediction of Particulate Matter Being Accumulated in a Diesel Particulate Filter (디젤 매연 필터에서 퇴적되는 입자상 물질의 퇴적량 예측)

  • Yu, Jun;Chun, Je-Rok;Hong, Hyun-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.29-34
    • /
    • 2009
  • Diesel particulate filter (DPF) has been developed to optimize engine out emission, especially particulate matter (PM). One of the main important factors for developing the DPF is estimation of soot mass being accumulated inside the DPF. Evaluation of pressure drop over the DPF is a simple way to estimate the accumulated soot mass but its accuracy is known to be limited to certain vehicle operating conditions. The method to compensate drawback is adoption of integrating time history of the engine out PM and burning soot. Present study demonstrates current status of the soot estimation methods including the results from the engine test benches and vehicles.

Fabrication and Characteristics of Diesel Particulate Filters (I) (Diesel Particulate Filter의 특성 및 제조방법 (I))

  • Yang, Jin
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.117-129
    • /
    • 1998
  • The atmospheric pollution by diesel emission is mainly attributed to particulate matters and NO$_x$. Their regulation limits have become tighter. This paper reviews the characteristics and the fabrication method of the diesd particulate filter(DPF) which is used to control the particulate matters of diesel emission. First the constituent of particulate matters and the regulation standard are discussed and then the state of the art post-treatment system is reviewed. The materials, the fabrication method and the control of thermal expansion of the ceramic honeycomb filter, which is widely used as the DPF, are also reviewed.

  • PDF