• Title/Summary/Keyword: Particulate air pollution

Search Result 440, Processing Time 0.029 seconds

INFLUENCING (NANO)PARTICLE EMISSIONS OF 2-STROKE SCOOTERS

  • Czerwinski, J.;Comte, P.;Reutimann, F.;Mayer, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape(SAEFL, BUWAL). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission(PM) was measured with the same method as for Diesel engines. It can be stated, that the oil and fuel quality have a considerable influence on the particle emissions, which are mainly oil condensates. The engine technology influences the (nano)particle emissions by: mixture preparation, mixture tuning, oil consumption, postoxidation, quality, condition and temperature of the catalyst. Since the particulate emission of the 2-S consists mainly of lube oil condensates the minimization of oil consumption stays always an important goal.

Analysis of the Emission Benefits of Using Alternative Maritime Power (AMP) for Ships

  • Kim, Kyunghwa;Roh, Gilltae;Chun, Kangwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.381-394
    • /
    • 2019
  • The marine industry contributes a large proportion of the air pollutant emissions along coastal regions, and this air pollution has been strongly linked to cardiovascular diseases and other illnesses. To alleviate the problem, many ports have installed alternative maritime power (AMP) facilities that enable onboard marine auxiliary engines with generators (gensets) to be shut down while a ship is at berth. This study compared the emissions from conventional gensets with those from AMP facilities, focusing on four emission types: greenhouse gases (GHG), sulphur oxides (SOX), nitrogen oxides (NOX), and particulate matter (PM). Both direct (combustion / operation) and indirect (upstream) emissions were considered together for the emission comparison. The results showed that AMP has lower emissions than conventional onboard gensets, and this benefit is highly dependent on the electricity generation mix onshore. On average, GHG emissions could be reduced by about 18.3 %, while the other emissions (SOX, NOX, and PM) would decrease more dramatically (88.4 %, 90.1 %, and 91.5 %, respectively). Additionally, future benefits of the AMP would increase due to the expansion of renewable energies. Thus, this study supports the potential of AMP as a promising solution for environmental concerns at ports worldwide.

A Study on Calculation of Air Pollutant Emissions from ships at Incheon Port and the Effects of Eco-Friendly Policies (인천항 선박 대기오염물질 배출량 산정 및 친환경 정책 효과에 대한 연구)

  • Lee, Jungwook;Lee, Hyangsook
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • In the past, interest in air pollution was concentrated on greenhouse gases, but in recent years, interest in fine dust has been increasing. The media and environmental organizations continue to emphasize air pollution caused by fine dust. The awareness of fine dust is increasing, and air pollution generated at ports is analyzed to be serious as a domestic factor excluding foreign inflows. Recognizing this, in order to reduce air pollution generated at ports, special laws on improving air quality, such as port areas, have been enacted in Korea, and attempts are being made to curb air pollution caused by ports. In this law, it is a policy that regulates air pollutants generated not only by ships but also throughout ports such as vehicles and unloading machines, and representative are ECA, VSR, and AMP. This study attempted to analyze the effects of these eco-friendly policies at Incheon Port. First of all, a study was conducted to calculate emissions assuming that there was no policy, analyze each policy, and finally calculate and compare actual emissions reflecting all policies. The methodology presented by the European Environmental Administration and the U.S. Environmental Protection Agency was used, and pollutants to be analyzed were analyzed for sulfur oxides (SOX), carbon monoxide (CO), nitrogen oxides (NOX), total floating substances (TSP), fine dust and ultrafine dust (PM10, PM2.5) and ammonia (NH3). As a result of the analysis, it was analyzed that the actual emission reflecting all policies was about 4,097 tons/year, which had an emission reduction effect of about 760 tons/year compared to about 4,857 tons/year when the policy was not reflected. When the effects of each policy were analyzed individually, it was found that ECA 4,111 tons/year, VSR 4,854 tons/year, and AMP 4,843 tons of air pollutant emissions occurred The results of this study can be used as basic data and evidence for policy establishment related to the atmospheric environment at Incheon Port.

A prediction study on the number of emergency patients with ASTHMA according to the concentration of air pollutants (대기오염물질 농도에 따른 천식 응급환자 수 예측 연구)

  • Han Joo Lee;Min Kyu Jee;Cheong Won Kim
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2023
  • Due to the development of industry, interest in air pollutants has increased. Air pollutants have affected various fields such as environmental pollution and global warming. Among them, environmental diseases are one of the fields affected by air pollutants. Air pollutants can affect the human body's skin or respiratory tract due to their small molecular size. As a result, various studies on air pollutants and environmental diseases have been conducted. Asthma, part of an environmental disease, can be life-threatening if symptoms worsen and cause asthma attacks, and in the case of adult asthma, it is difficult to cure once it occurs. Factors that worsen asthma include particulate matter and air pollution. Asthma is an increasing prevalence worldwide. In this paper, we study how air pollutants correlate with the number of emergency room admissions in asthma patients and predict the number of future asthma emergency patients using highly correlated air pollutants. Air pollutants used concentrations of five pollutants: sulfur dioxide(SO2), carbon monoxide(CO), ozone(O3), nitrogen dioxide(NO2), and fine dust(PM10), and environmental diseases used data on the number of hospitalizations of asthma patients in the emergency room. Data on the number of emergency patients of air pollutants and asthma were used for a total of 5 years from January 1, 2013 to December 31, 2017. The model made predictions using two models, Informer and LTSF-Linear, and performance indicators of MAE, MAPE, and RMSE were used to measure the performance of the model. The results were compared by making predictions for both cases including and not including the number of emergency patients. This paper presents air pollutants that improve the model's performance in predicting the number of asthma emergency patients using Informer and LTSF-Linear models.

Variability of the PM10 Concentration in the Urban Atmosphere of Sabah and Its Responses to Diurnal and Weekly Changes of CO, NO2, SO2 and Ozone

  • Wui, Jackson CHANG Hian;Pien, CHEE Fuei;Kai, Steven KONG Soon;SENTIAN, Justin
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.109-126
    • /
    • 2018
  • This paper presents seasonal variation of $PM_{10}$ over five urban sites in Sabah, Malaysia for the period of January through December 2012. The variability of $PM_{10}$ along with the diurnal and weekly cycles of CO, $NO_2$, $SO_2$, and $O_3$ at Kota Kinabalu site were also discussed to investigate the possible sources for increased $PM_{10}$ concentration at the site. This work is crucial to understand the behaviour and possible sources of $PM_{10}$ in the urban atmosphere of Sabah region. In Malaysia, many air pollution studies in the past focused in west Peninsular, but very few local studies were dedicated for Sabah region. This work aims to fill the gap by presenting the descriptive statistics on the variability of $PM_{10}$ concentration in the urban atmosphere of Sabah. To further examine its diurnal and weekly cycle pattern, its responses towards the variations of CO, $NO_2$, $SO_2$, and ozone were also investigated. The highest mean value of $PM_{10}$ for the whole study period is seen from Tawau ($35.7{\pm}17.8{\mu}g\;m^{-3}$), while the lowest is from Keningau ($31.9{\pm}18.6{\mu}g\;m^{-3}$). The concentrations of $PM_{10}$ in all cities exhibited seasonal variations with the peak values occurred during the south-west monsoons. The $PM_{10}$ data consistently exhibited strong correlations with traffic related gaseous pollutants ($NO_2$, and CO), except for $SO_2$ and $O_3$. The analysis of diurnal cycles of $PM_{10}$ levels indicated that two peaks were associated during the morning and evening rush hours. The bimodal distribution of $PM_{10}$, CO, and $NO_2$ in the front and at the back of ozone peak is a representation of urban air pollution pattern. In the weekly cycle, higher $PM_{10}$, CO, and $NO_2$ concentrations were observed during the weekday when compared to weekend. The characteristics of $NO_2$ concentration rationed to CO and $SO_2$ suggests that mobile sources is the dominant factor for the air pollution in Kota Kinabalu; particularly during weekdays.

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 2. Exhaust and Non-regulated, PM emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 2. 배출가스 및 미규제 물질, 입자상 물질 특성)

  • Lee, Min-Ho;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.374-384
    • /
    • 2016
  • Concern about air pollution is gradually rising up in domestic and foreign, automotive and fuel researchers are trying to reduce vehicle exhaust emissions, through a lot of approaches, which consist of new engine design and innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research is proceeding by two main issues : exhaust emissions and PM particle emissions of gasoline vehicle. Exhaust emissions, non-regulated emissions and PM (particulate matter) particles of automotive are causing many problems which ambient pollution and harmful effects on the human body. The main particulate fraction of automotive exhaust emissions consists of small particles. Because of their small size, inhaled particles can easily penetrate deep into the lungs. The rough surfaces of these particles make it easier for them to combine with other toxins in the environment. Thus, the hazards of particle inhalation are increased. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline vehicle exhaust emissions, non-regulated emissions and nano-particle emissions. Also, this paper assessed exhaust emission characteristics at 2 type test modes. The test modes were FTP-75 and HWFET. All measurement items be verified less than the value of regulated emissions. It could be known difference increase and decrease by each measurement item depending on increase the oxygen contents.

Contamination Characteristics of Hazardous Air Pollutants in Particulate Matter in the Atmosphere of Ulsan, Korea (울산시 미세먼지의 유해대기오염물질 오염 특성)

  • Lee, Sang-Jin;Kim, Seong-Joon;Park, Min-Kyu;Cho, In-Gyu;Lee, Ho-Young;Choi, Sung-Deuk
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.281-291
    • /
    • 2018
  • Recently, long-range atmospheric transport (LRAT) from China is regarded as a major reason for elevated levels of particulate matter (PM) in Korea. However, local emissions also play an important role in PM pollution, especially in large-scale industrial cities. In this study, PM samples were collected at suburban, residential, and industrial sites in Ulsan, Korea. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals were analyzed, and a potential human health risk assessment was conducted. The concentrations of PAHs and heavy metals in total suspended particles (TSP) increased during high $PM_{10}$ episodes, and backward trajectory analysis verified the influence of LRAT from China during the high episodes. Furthermore, the concentrations of PAHs and heavy metals in $PM_{2.5}$ and $PM_{10}$ at the industrial site were higher than those at the residential site. The risk assessment of PAHs and heavy metals in $PM_{2.5}$ suggested no significant health effects. The highest levels of PAHs were measured in the particle size of $0.32{\sim}0.56{\mu}m$ at the residential site, and those of heavy metals were detected in the particle size of 1.8~5.6 and $>18{\mu}m$, reflecting different major emissions sources for both groups. On the basis of this preliminary study, we are planning long-term monitoring and modeling studies to quantitatively evaluate the influence of industrial activities on the PM pollution in Ulsan.

Protective Effects of Novel Tripeptide Against Particulate Matter-induced Damage in HaCaT Keratinocytes (미세먼지에 의해 유발되는 인간각질형성세포 손상에 대한 신규 트리펩타이드의 보호 효과)

  • Lee, Eung Ji;Kang, Hana;Hwang, Bo Byeol;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, we investigated inhibitory effect of Tripeptide against particulate matter (PM)-induced damage in human keratinocytes. PM-induced cell death was inhibited by Tripeptide and the activity of aryl hydrocarbon receptor (AhR) also inhibited by Tripeptide resulting in reduced expression of its downstream targets, cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and cyclooxygenase-2 (COX-2), which are responsible for toxic metabolites production and inflammation. Furthermore, PM-induced expressions of pro-inflammatory cytokines, matrix metalloproteinase-1 (MMP-1) and apoptosis-related factors were decreased by anti-oxidant activity of Tripeptide. From these results, it has been shown that the Tripeptide has protective effect against PM-induced skin damage not only through the inhibiting of keratinocyte death but also through the inhibiting the secretion of several damage-inducing factors to adjacent skin tissue. And the results suggested that Tripeptide with anti-pollution effect could be applied as a new functional cosmetic material.

Emission Characteristics of Fine Particles, Vanadium and Nickel from Heavy Oil Combustion (중유 연소 시 발생하는 미세입자 및 니켈과 바나듐의 대기 중 배출특성)

  • Jang, Ha-Na;Kim, Sung-Heon;Lee, Ju-Hyung;Hwang, Kyu-Won;Yoo, Jong-Ik;Sok, Chong-Hui;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2006
  • This study identified a particle size distribution (PSD) of fine particulate matter and emission characteristics of V and Ni by the comparison between anthropogenic sources of oil combustion (industrial boiler, oil power plant, etc.) and lab-scale combustion using a drop-tube furnace. In oil combustion source, the mass fraction of fine particles (less than 2.5 micrometers in diameter) was higher than that of coarse particles (larger than 2.5 micrometers in diameter) in $PM_{10}$ (less than 10 micrometers in diameter) as like in lab-scale oil combustion. In addition to this, it was identified that ultra-fine particles (less than 0.1 micrometers in diameter) had a large distribution in fine particles. Toxic metals like V and Ni had large mass fractions in fine particles, and most of all was distributed in ultra-fine particles. Most of ultra-fine particles containing toxic metals have been emitted into ambient by combustion source because it is hard to control by the existing air pollution control device. Hence, we must be careful on these pollutants because it is obvious that these are associated with adverse health and environmental effect.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.