• 제목/요약/키워드: Particulate air pollution

검색결과 444건 처리시간 0.027초

Comparison of air pollution and the prevalence of allergy-related diseases in Incheon and Jeju City

  • Jeong, Su-Ho;Kim, Jeong-Hee;Son, Byong-Kwan;Hong, Seong-Chul;Kim, Su-Young;Lee, Geun-Hwa;Lim, Dae-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • 제54권12호
    • /
    • pp.501-506
    • /
    • 2011
  • Purpose: A high level of air pollutants can increase the number of patients with allergy-related diseases such as asthma and allergic rhinitis (AR). To analyze the association between air pollution and allergic disease, we investigated 2 areas in Korea: Incheon, an industrial area, and Jeju, a non-industrialized area. Methods: Second grade students at elementary schools (11 schools in Incheon and 45 schools in Jeju) were examined in a cross-sectional study. A questionnaire was used and a skin prick test was performed. The levels of $NO_2$, $CO_2$, $O_3$, particulate matter (PM) $PM_{10/2.5}$, formaldehyde, tVOCs, and dust mites in the classrooms and grounds were determined. Results: The levels of outdoor CO, $PM_{10}$, and $PM_{2.5}$ were significantly higher in Incheon (P<0.01). The levels of indoor CO, $CO_2$, $PM_{10}$, $PM_{2.5}$ were significantly higher in Incheon (P<0.01). The prevalence rates of AR symptoms at any time, AR symptoms during the last 12 months, diagnosis of rhinitis at any time, and AR treatment during the last 12 months were significantly higher in Incheon (P<0.01). The prevalence rate of wheezing or whistling at any time, and wheezing during the last 12 months were significantly higher in Incheon (P<0.01). Conclusion: We found that the children living in Incheon, which was more polluted than Jeju, had a higher rate of AR and asthma symptoms compared to children in Jeju. To determine the effect of air pollution on the development of the AR and asthma, further studies are needed.

Air Pollution Trends in Japan between 1970 and 2012 and Impact of Urban Air Pollution Countermeasures

  • Wakamatsu, Shinji;Morikawa, Tazuko;Ito, Akiyoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권4호
    • /
    • pp.177-190
    • /
    • 2013
  • Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.

공동주택에서 취침 시 실내공기환경 평가에 관한 연구 (A Study on the Assessment of the IAQ during Nightime)

  • 김동규;김삼열;김세환
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.93-98
    • /
    • 2007
  • Effort has been performed for latest 20 years to improve resident's comfort and indoor environment in building. And interest and effort to improve indoor air environment among various indoor environment elements have continuously increased since 1990s, because it is examined scientifically that various contaminants generated indoor affect human body. Specially, indoor air contaminants generated from apartments are those exhausted from resident's indoor environment, closing materials and household. Indoor air environment in buildings is different according to pollution degree, existence availability of pollution source, ventilation amount, and meteorology. It is known that other contaminants more than about 900 kinds generate according to a kind of work or action in a room. Specially, nowadays buildings are well insulated and confidentiality-centered for environment protection and economical side. So indoor air contaminants are generated from indoor air pollution sauces of unprepared ventilation, human body carbon dioxide emissions, and various building materials. when these are accumulated in long term human body, it is harmful to resident's health, but awareness for this is very insufficient. Because bedroom is space that people inhabit for a long time by unconscious state and indoor environment occupies important part for resident's health and quality of life at sleep, the actual condition of air quality is investigated, improvement countermeasure is considered, and ventilation amount is analyzed. In this study, putting case that the most longest stayed time is sleeping time when people inhabit in the apartment, the air quality according to volume of bedroom space at sleep was measured and analyzed, and the data acquired will be the basis for improvement on this.

디젤기관차의 출력과 배기가스 배출특성의 상관관계 연구 (Relationships between Characteristics of Emission Gases and Engine Load Condition of Diesel Locomotive Engine)

  • 조영민;권순박;박덕신;박은영;임인권
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1558-1563
    • /
    • 2007
  • The air pollution by the diesel locomotives has become serious environmental concern because the emission gases are exhausted without any further treatment. Recently, the public interest on the air pollutants emission reduction technology is increasing due to the establishment of 'Metropolitan Air Quality Preservative Law' and the regulation of local governments on the urban air quality. In this study, we measured the concentration of particulate matters and gaseous pollutants by using a scanning mobility particle sizer, a dust spectrometer, and a stack sampler upon various engine load condition. The results show that the amount of emitted air pollutants increased upon the increase of engine power. The development of new technology to reduce the air pollutants emission is urgently required.

  • PDF

도시 대기중에서 $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$의 평형에 관한 연구(II) (A Study on Equilibrium of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ in Urban Atmosphere)

  • 천만영;이영재;김희강
    • 한국대기환경학회지
    • /
    • 제9권2호
    • /
    • pp.154-159
    • /
    • 1993
  • Theoretical prediction of the equilibrium of temperature and relative humidity dependance involving $HNO_{3(g)}-NH_{3(g)}$ and $NH_4NH_{3(s, aq)}$ was compared with atmospheric measurement of particulate nitrate$(NO_3^-)$, Ammonia-Nitric Acid partial pressure product $([$NH_{3(g)}][HNO_{3(g)}]ppb^2$) by a triple filter pack sampler from Oct 1991 to July 1992. The measured $HNO_3NH_3$ concentration product K was greater than equilibrium constant $K_p$ calculated from thermodynamic data of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ during fall, winter and spring. But K was lower than $K_p$ in summer. K was greater than $K_p$ as the result of supersaturation by air pollution, particularly anthropogenic $NH_3$.The reason of $K < K_p$ was due to removal of particulate nitrate$(NO_3^-)$ by rainout and washout. $NH_4NO_3$ which consists mainly of particulate nitrate is formed by reaction between $HNO_3$ and $NH_3$. As a result of the removal of particulate nitrate$(NO_3^-)$ by rainout and washout, concentrations of $HNO_3$ and $NH_3$ are decreased by equilibrium transfer(Le Chatelier's Law) in atmosphere.

  • PDF

Vision-based Predictive Model on Particulates via Deep Learning

  • Kim, SungHwan;Kim, Songi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2107-2115
    • /
    • 2018
  • Over recent years, high-concentration of particulate matters (e.g., a.k.a. fine dust) in South Korea has increasingly evoked considerable concerns about public health. It is intractable to track and report $PM_{10}$ measurements to the public on a real-time basis. Even worse, such records merely amount to averaged particulate concentration at particular regions. Under this circumstance, people are prone to being at risk at rapidly dispersing air pollution. To address this challenge, we attempt to build a predictive model via deep learning to the concentration of particulates ($PM_{10}$). The proposed method learns a binary decision rule on the basis of video sequences to predict whether the level of particulates ($PM_{10}$) in real time is harmful (>$80{\mu}g/m^3$) or not. To our best knowledge, no vision-based $PM_{10}$ measurement method has been proposed in atmosphere research. In experimental studies, the proposed model is found to outperform other existing algorithms in virtue of convolutional deep learning networks. In this regard, we suppose this vision based-predictive model has lucrative potentials to handle with upcoming challenges related to particulate measurement.

Environmental Source of Arsenic Exposure

  • Chung, Jin-Yong;Yu, Seung-Do;Hong, Young-Seoub
    • Journal of Preventive Medicine and Public Health
    • /
    • 제47권5호
    • /
    • pp.253-257
    • /
    • 2014
  • Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

Wear Particulate Matters and Physical Properties of Silica filled ENR/BR Tread Compounds according to the BR Contents

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.243-249
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, we investigated the effect of varying the content of butadiene rubber (BR) on the properties of the rubber compounds and the amount of particulate matter in the TBR tire tread compound. Furthermore, we utilized carbon black in the NR/BR blend compounds owing to its excellent compatibility, and we used silica in the ENR-25/BR blend compounds because it can interact chemically with epoxide groups. The NR/BR blend compounds and the ENR-25/BR blend compounds were evaluated by varying their BR content between 20 phr and 30 phr. The results showed that the ENR-25/BR blend compounds had superior wear resistance than the NR/BR blend compounds. This was caused by the interaction between silica and ENR. In addition, it was confirmed that the increased wear resistance as the BR content increased. Furthermore, compared to the NR/BR blend compounds, ENR-25/BR blend compounds exhibited a lower tan 𝛿 value at 60℃ because silica was used as filler. This indicates a higher fuel efficiency. The measurement results for wear particulate matter showed that as increasing the BR content resulted in generation of less wear particulate matter. This was caused by the increased wear resistance. Moreover, the ENR-25/BR blend compounds with excellent filler-rubber interaction exhibited lower quantities of generated wear particulate matters as compared to the NR/BR blend compounds.

대기오염과 실내 거주자의 활동도가 교실 내부의 입자 크기별 먼지 농도에 미치는 영향 (The Effect of Outdoor Air and Indoor Human Activity on Mass Concentrations of Size-Selective Particulate in Classrooms)

  • 최상준
    • 한국환경보건학회지
    • /
    • 제34권2호
    • /
    • pp.137-147
    • /
    • 2008
  • This study evaluated the effects of the human activity and outdoor air on concentrations of size-selective particulate matters (PM) by conducting a realtime measurement in classrooms and on roofs at 4 elementary schools, 3 middle schools and 3 high schools in Incheon City. PM concentrations featured repetitive pattern of increasing during break time (including lunch hours) and cleaning time while decreasing during class hours. This trend was more prominent with inhalable PM and PM10 than fine PMs (PM2.5, PM1.0). The indoor/outdoor (I/O) ratio of inhalable PM and PM10 exceeded 1 while that of fine PMs was close to or below 1. The PM2.5 (out)/PM10 (out) ratio stood at 0.59 (${\pm}0.16$) and the PM2.5 (in)/PM10 (in) ratio was 0.29 (${\pm}0.09$), suggesting that occupant activity had a greater effect upon coarse particles (PM10-PM2.5) than upon fine particles (PM2.5, PM1.0). The correlations between the indoor and the outdoor PM concentrations showed a stronger positive correlation for fine particles than that of coarse particles. The linear regression analysis of PM concentrations indoor and outdoor indicated a higher determinant coefficient ($r^2>0.9$), and consistency for fine particles than in case of coarse particles. In conclusion, the results of this study suggest that the indoor coarse particle concentration is more attributed to occupant activity and the indoor fine particle concentration is more influenced by outdoor air pollution.

미세먼지에 의한 안구질환 발병 연구 동향 (Recent Advances in Understanding the Mechanisms of Particulate Matter-mediated Ocular Diseases)

  • 이혜숙;최영현
    • 생명과학회지
    • /
    • 제30권8호
    • /
    • pp.722-730
    • /
    • 2020
  • 대기오염은 더 이상 무시할 수 없는 심각한 건강 위험요소 중 하나로 여겨지고 있다. 미세먼지는 각종 생화학적 오염물질, 유기 화합물, 무기 화합물 및 중금속 등의 유해성분을 포함한 대기오염의 주요 구성 미립자 성분이다. 최근 여러 연구에서 미세먼지가 암, 심혈관질환, 호흡기질환 및 피부질환 등을 이환율과 관련이 있다고 밝혀져 있다. 그러나 눈이 대기 오염에 직접 노출되는 기관 중 하나임에도 불구하고, 미세먼지에 의한 눈의 영향 평가는 소수에 그치고 있다. 본 총설에서는 역학 및 임상 결과, 생체 내 및 생체 외 실험 결과를 바탕으로, 미세먼지 노출과 안구표면질환, 망막질환 및 녹내장 등의 안구질환의 발달 사이의 연관성을 제시하였다. 또한 미세먼지 노출이 산화적 스트레스, 염증반응, 자가포식 등을 통해 안구 표면질환을 야기할 수 있다는 사실을 제시하였다. 그러나 현재까지 미세먼지에 대한 대부분의 안구 영향 평가가 안구 표면질환에 국한되어 이루어지고 있으며, 후안부의 병리학적 발생 기전은 아직 밝혀져 있지 않다. 따라서, 미세먼지 노출에 대한 안구 영향 평가는 안구 표면을 포함하여 후안부에 대한 지속적인 역학, 임상 및 기초 연구가 수반되어야 할 것으로 사료된다.