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Vision-based Predictive Model on Particulates via Deep Learning

SungHwan Kim† and Songi Kim*

Abstract – Over recent years, high-concentration of particulate matters (e.g., a.k.a. fine dust) in South 
Korea has increasingly evoked considerable concerns about public health. It is intractable to track and 
report PM10 measurements to the public on a real-time basis. Even worse, such records merely amount 
to averaged particulate concentration at particular regions. Under this circumstance, people are prone 
to being at risk at rapidly dispersing air pollution. To address this challenge, we attempt to build a 
predictive model via deep learning to the concentration of particulates (PM10). The proposed method 
learns a binary decision rule on the basis of video sequences to predict whether the level of particulates 
(PM10) in real time is harmful (>80μg/m�) or not. To our best knowledge, no vision-based PM10

measurement method has been proposed in atmosphere research. In experimental studies, the proposed 
model is found to outperform other existing algorithms in virtue of convolutional deep learning 
networks. In this regard, we suppose this vision based-predictive model has lucrative potentials to 
handle with upcoming challenges related to particulate measurement.
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1. Introduction

Particulate matters (PM; a.k.a. atmospheric particulate 
matter or particulates) are composed of both natural and 
human-made (i.e., anthropogenic) substances including
microscopic solid or liquid matter suspended in atmosphere. 
Generally they are known to make change to climate and 
precipitation, and give rise to harmful impacts on human 
health. Of late, confronting threats of particular matters 
become no longer negligible as the media and research 
groups increasingly determine their deleterious effects
[1-4, 42]. For instance, a recent study in 2017 reveals 
that population in old and youth groups are more likely to 
undergone critical respiratory symptoms [5], and patients 
of respiratory disorder increasingly rise in number due 
to particular matters [6]. Under this circumstance, it is 
imperative to build up a strategic monitoring system and 
real-time based alarming framework to timely tackle 
with the effect of particulates. And yet, it is intractable 
to improve the current particulate reporting system (i.e., 
county-based whose coverage of particulates remains 
insufficient to meet civilians’ demand.

Korea has more fine-dust pollution than almost any other
country in the organization for economic cooperation and 
development (OECD). The report from the organization, 
as of 2015, says Korea had an average annual of 32 
micrograms per cubic meter: the highest among the 35 
OECD member countries. Since 2006, the department of 
environment in Korea has set the limit, as the warning level, 
on particulates at 80 μg/m� on the basis of daily average 

(http://www.airkorea.or.kr/). The fact that a great deal of 
governmental policies related to particulates have been 
issued suggests that particulates come into our critical 
concerns to public health, which appears to be quite 
immediate in various aspects [7-8].

In light of vision research, atmospheric haze (e.g., mist, 
cloud, smoke or fog) should be properly removed as 
blurring out the clarity of the atmosphere. Typically haze 
undermines the light penetration of dense atmosphere that 
interferes with detecting distant subjects. Thus, effective 
controlling for the light effects to remove haze is desired in 
photography and vision-based applications [9-11]. Cai et al. 
[12] introduces DehazeNet, an outstanding algorithm to 
separate unexpected haze to extract clear-cut vision. Related
to this, a range of vision-based smoke detection algorithm 
have been introduced [13]. For example, Toreyin et al.
[14] proposed the smoke detection algorithm that builds 
on temporal variation of wavelet domain. This algorithm 
utilizes edge and colour to determine the features of smoke. 
Chen et al. [15] proposed a method for smoke detection 
algorithm using the total number of smoke pixel and the 
accumulation of motions that separates smoke and non-
smoke moving objects. In short, exploiting temporal 
variation serves as integral role in learning a vision-based 
predictive model, and there is much room for extension to 
a predictive model of particulates that builds on vision-
based algorithms such that color, motion, spatial difference, 
disorder, and image training are mainly taken into account.

When it comes to deep learning, it is well-known that 
the convolutional neural networks (CNNs) is an efficient 
image processing algorithm adapted for vision analysis and 
image recognition, and has proved its superior performance 
in many applications ([17-19]). The fortes of CNNs are 
largely two-fold: (1) CNNs locally link to the convolutional 
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Fig. 2. Image comparisons between safe and harmful 
atmospheric conditions related to PM10: (i) safe 
(80 	��/�� below) and (ii) harmful (80��/��

above) particulate levels (iii) an example of 
residual differences derived from two consecutive 
frames in a video

layers rather than full connections, which indicates that 
output neurons in the network structure are subject to 
local input neurons. This allows the locally-connected 
convolutional layers to readily solve spatially-correlated 
problems [20,21] (2) CNNs generate new layers (a.k.a. 
pooling layers) that consists of imagery features relative to 
receptive region and thereby narrows down the number 
of parameters to be estimated. For these reasons, the 
compressed layers, namely pooling layers, in CNNs enable 
to address large-scale problems [22]. Therefore, in case of 
prediction models that learn high-dimensional vision data, 
chances are that CNNs are superior to extant predictive 
models.

To date, measuring particulates mostly relies on the 
sensor based approaches. The sensor-based measurement 
has an unparalleled advantage of accuracy, low cost and 
handy configurations. However, the capturing coverage is 
hardly to exceed its vicinity region and is not suited to 
accommodate the degree of particulates’ movement. To the 
contrary, a vision-based approach is capable of scanning 
wide areas in that the video device of any sort collects 
spatial information (e.g., accumulated dust in the air) but 
not limited to picturing terrestrial objects. Suppose that we 
obtain two video clips. In Fig. 2 (i - ii), two images are 
drawn the two video sequences recoded at the same spot in 
a campus region, distinguishable to the eye (i.e., between 
bright and hazy). Given two images, we can postulate that 
there are image signals that characterize binary levels 
sufficient to build a binary predictive model. And yet we 
should remember that a cloudy sky does not necessarily 
indicates high-particulate level, and then we should address 
this challenge and come up with how to adjust varying 

atmospheric to uncover the potential features based on 
particulates.

Combined together, this paper introduces an image-
based predictive model of particulate matters, and applies 
the deep learning architecture of a convolutional neural 
networks to features extracted from video sequences. To 
our best knowledge, no vision-based method has been 
proposed to directly predict particulate matters. Inter-
estingly, the previous works [23-25] consume a great deal 
of effort to addressing the particulate problems. Yet, most 
of the existing models are just involved in temporal PM10

prediction [26], predominantly designed to forecast its 
concentration the time ahead, not measuring the level of 
concentration at present [27]. In theory, this temporal 
model is largely linked to time dependent methods. 
Narrowing down the scope of functions, we particularly 
highlight on a binary prediction model whether PM10 is 
greater than 80 μg/m� or not. Importantly, since the 
convolutional neural network is shown to achieve many 
successes in diverse research fields (e.g., bio-medicine, 
vision recognition, robotics [28-32], CNNs are the sensible 
choice to develop an outstanding predictive model. 

The major contributions to this paper include as below: 
(1) the temporal variation in video sequences and spatial 
dependencies are considered in the model that applies deep 
learning architecture of CNNs (2) the binary prediction 
model of PM10 derived from CNNs outperforms, with a 
high accuracy, other existing models. (3) the proposed 
predictive model on PM10 is widely applicable to temporal 
monitoring of particulate levels and can result in wide use 
in the form of electrical gadgets.

The paper is outlined as follows. In Chapter 2, we discuss
the previous works and proposed method that leverages the 
temporal domain of video sequences together with CNNs.
In Chapter 3, in an effort to verifying performance, we carry
out diverse experiments (e.g., street regions, construction
site and forest areas) to test if the proposed algorithm 
effectively implements the risk prediction. Finally, we
discuss future works and leave concluding remarks in 
Chapter 4.

2. Datasets and Related Works

2.1 Datasets

Below we demonstrate how to collect particulate data 

Fig. 1. The model architecture of Inception-v3
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that learn a predictive model. Daegu is traditionally known 
as one of major cities in South Korea, where a large-
scale industrial complex settles in together with high 
population density. Due to these social and environmental 
circumstances, gas emission has been a years-long environ-
mental challenge, and high-concentration dusts constantly 
blew and cover all over the year. This is the reason 
behind why we choose Daegu as suitable for collecting 
air pollution information. To measure particulates, we 
utilize a high-performance device (Aerosol Mass Monitor 
(AEROCET-831) manufactured by Met One Instruments; 
http://metone.com/), whose capability on measurable 
particulate size ranges from PM2.5 to PM10. This device is 
particularly featured with high accuracy and robustness as 
compared with extant others. In this study, we focus solely 
on the level of PM10 for simplicity. The interested regions 
largely include three categories: (1) street regions by 
exhausts emission (2) vicinity of construction sites (3) 
residential areas. In brief, video sequences are recorded 
with 25 frames per second in 98 street regions, 60 areas 
nearby construction sites and 60 forest regions for a total 
of 218 sequences. In an effort to balancing between 
atmospheric and territory influence, a majority of 
sequences are recoded in a way that approximately half of 
screen is occupied by sky and the second half by grounds.
Besides, we also take into account residential areas, a 
group of trees and building complexes featured with only 
non-atmospheric information (i.e., absence of sky) in order 
to enhance applicability and practicability of the model. 
Data are collected three to four times a day over the 
spring and summer seasons in 2017. To take a glimpse, 
thumb nails of each video sequence are presented in 
Table 2. The video sequences are taken by Samsung 
phone cameras, the most popularly used cellular phones,
with the best resolution.

2.2 Convolutional neural network architectures

In the field of image recognition, the use of convolu-
tional layers in these deep networks [33] has increasingly 
prevalent, implicating much of its computational and 
statistical efficiency to a range of applications. Surprisingly, 
methods employing convolutional neural networks (CNNs) 
swept major image recognition challenges (e.g., the 
ILSVRC challenge; http://www.image-net.org/) and have 
recently also been extensively applied to medical image 
analysis [34]. Convolutional filters in CNNs emulate the 
pattern recognition of the visual cortex, where so-called 
receptive fields activate subject to distinct spatial patterns. 
Simply put, the CNN takes the transformed input image, 
repetitive convolution and pooling and plug-in derived 
nodes to fully connected networks. The parameters of the 
entire network are estimated by forward propagating the 
input through the network. Inspired by CNNs, Google 
invests non-trivial efforts to developing high-performing 
networks, whose architecture builds on CNN, a pre-trained 

network on the data [37], in spirit of transfer learning 
[40]. To this end, Singh et al. [38] proposed the idea of 
transferring from the image classification adopts a pre-
trained model from ImageNet [35] or Coco-DB [36]. It 
can be understood as a CNN variant aiming to improve 
computational efficiency. ImageNet is a popularly applied 
academic data set in machine learning to learn image 
recognition system. Subsequent to Inception-v1 [39], the 
algorithm advances towards Inception-v3, currently most 
widely applied one. Major advantages of Inception-v3 
are largely two-fold: (1) the fact that Inception-v3 achieves 
21.2% top-1 and 5.6% top-5 error for single frame 
evaluation suggests its outstanding prediction accuracy on 
the ILSVRC-2012 classification benchmark (2) affordable 
computational resources to process the input (e.g., 5 billion
multiply-adds per inference with using less than 25 million 
parameters). More precisely, the form of inductive transfer 
with an Inception-v3 architecture model displays the 
consecutive tasks of convolutional layers followed by a 
pooling layer, convolutional layers, Inception blocks, a 
dropout layer and a fully connected layer, each of which 
is learned by training the network on the data. In short, 
Fig. 1 sketches as an example how TensorBoard deploys 
the Inception v3 architecture [37]. It cannot be emphasized 
enough that, unlike a conventional CNN, this inception 
module-oriented CNN enjoys remarkable saving of 
computational cost and outstandingly high accuracy. 
Inception structures are illustrated as in Fig. 3 (a)-(c).
Precisely, Inception modules can reduce the dimension of 
the input representation via 1	 × 	1 filters in the beginning 
stage. The rationale behind this technique is that the strong 
correlation between neighboring pixels protects loss of 
information and this dimension reduction even facilitates 
faster learning. Moreover, one can replace any �	 × 	�
convolution by a 1	 × 	� convolution followed by a 
�	 × 	1 convolution as well as increasing activations per 
tile. These schemes also promote to learn models faster in 
effect due to disentangled features.

Fig. 3. Three instances of Inception modules proposed by 
Szegedy et al.[1]. These modules allow to cut down 
the dimension of the input representation via 1 × 1
filters. One can replace any n	 × 	n convolution by 
a 1 × n convolution followed by a n × 1
convolution as well as increasing activations per 
tile. These techniques promote to learn models 
faster in effect and produce disentangled features
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3. Proposed Method

3.1 Strategic workflows for PM10 predictive model

In this chapter, we introduce a novel predictive model on 
particulates, named “Deep Haze”, on the basis of temporal 
video sequences in RGB domain. In what follows, we 
delineate in order how the predictive model is implemented.

3.1.1 Pre-processing for video sequences

(Step 1) Preparation of image frames: At the initial stage,
we layout � temporal sequences of 1080×1920 pixels 
from a single video for � seconds (i.e., � = 25 frames 
per second on average). Considering three RGB values, a 
single image frame includes, in turn, a 1080×1920×3 data 
matrix. Suppose we use video sequences of two seconds, 
and this produces 50 image frames in total.

(Step 2) RGB residual computation: When shooting 
image, haze (i.e., particulates) has a tendency to leading to 
non-smooth patterns, and hence it is vital to eliminate 
blurring effects at the outset. Inspired by this phenomenon, 
we may define a benchmark subject to intensity residuals 
of RGBs between raw and smoothed video sequences:

	���(�) 		= (�(�), �(�), �(�))
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pixel, ranging from 0 to 255 for � = 1, … ,�. In regard to 
smoothing, we apply the Gaussian blurring technique 
known as one of the most popularly used algorithm for 
image smoothing. Below the kernel smoothing estimator is 
denoted as
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1
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���
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where �� is an observed pixel ( 1 ≤ � ≤ � ), � the 
Gaussian kernel function and h an arbitrary bandwidth 
( ℎ = 3 in this paper). Consequently, this residual
���(�)	still contains 1080×1920 pixels and this seemingly 
unevenness measures can be a source of haze. In this 
regard, this residual is expected to capture sheer effects of 
haze in the sense that particulates are prone to sticking out 
of neighboring pixels. 

(Step 3) Derivation of residual differences: In this stage, 
we derive residual differences of RGB between two 
consecutive sequences:

����(�) = ���(���) −���(�)

    = (�(���) −�(�), �(���) − �(�),�(���) −�(�)),

for � = 1,… ,� − 1 . In theory, the residual differences 

account for the degree of haze effect’s variation at a pixel 
level overtime. Haze effects are typically quite unpredic-
table and mobile atmospheric conditions (e.g. sunshine, 
wind, barometric pressure etc). In essence, ����(�) is 
designed to gauge the total estimation of dust mobility. 
Importantly, a light effect, a potential distorting factor, 
commonly interferes with precise image analysis. By means
of residual differences, the adjustment of light effects can 
be made at ease. On account of the form of numeric 
formulation (i.e., ���(���) − ���(�)), the common amount 
of light effects automatically cancels out, so that we hardly 
need to normalize light (e.g., oversaturation), color, hue 
variations but rather can directly use ����(�) as a building 
block to learn a model. In this project, video sequence 
data are pre-processed via OpenCV (http://opencv.org/) 
implemented by Python, and an example of residual 
differences is illustrated in Fig. 2 (iii).

3.1.2 Integrative convolutional deep neural nets

(Step 4) Learning a model on CNNs: Using the pre-
processed data (i.e., residual differences), we propose to 
fuse multiple CNNs (a.k.a. ensemble technique in machine 
learning) to predict, in a binary fashion, whether a 
particulate level is harmful or not (>80	μg/m�). To obtain 
an individual CNN-based model, as a weak classifier, we 
apply the Inception-v3 architecture [37]. In theory, 
Inception-v3 is trained on ImageNet images, and learns on 
a new top layer that can distinguish other classes of images. 
To keep generality, we proceed with the typical process of 
Inception-v3 architecture as stated in Section 2.2 and Table 
1. In the pre-processing, a transformed image (i.e., ����(�)) 
is compressed to 2048-dimensional vector and the top layer 
takes this as input for each transformed image and softmax 
layer is added on top of this representation. When softmax 
layer contains � labels, this generally corresponds to 
learning �	 + (2048 × �) model parameters lined up 
with the learned biases and weights, respectively. In this 
project, our labels are limited in scope to two (i.e., safe 
and harmful) and so we fit a model with the total of 
4,098 parameters. Resultingly, this architecture provides 
a two dimensional output for each input sequence (i.e., 
input size: 1×1×2), to which we make a main change in the 
architecture. Each prediction output ������(�)� can be 
interpreted as the class label (i.e., safe or harmful) for each 
frame (i.e., ����(�) ) of residual differences for � =
1, … ,� − 1.

(Step 5) Integration of weak classifiers: Putting together, 
we assemble the � − 1 weak classifiers of Inception 
architecture via a major voting to construct an integrative 
classifier as follows:

�����������(�)�; 	1 ≤ �	 ≤ � − 1�

= �1			��			
∑ �(����(�))���
���

� − 1
> 0.5

	0																				��ℎ������													
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Table 1. The proposed architecture of CNN models in 
spirit of Inception v3

type patch size/stride input size

conv 3×3/2 299×299×3

conv 3×3/1 149×149×32

conv padded 3×3/1 147×147×32

pool 3×3/2 147×147×64

conv 3×3/1 73×73×64

conv 3×3/2 71×71×80

conv 3×3/1 35×35×192

3×Inception Fig. 3(a) 35×35×288

5×Inception Fig. 3(b) 17×17×768

2×Inception Fig. 3(c) 8×8×1280

pool 8×8 8×8×2048

pool 8×8 8×8×2048

linear logits 1×1×2048

softmax classifier 1×1×2

Fig. 4. The workflow of integrative CNNs-based model 
(Deep Haze) that learns on particulate matters

where f�diff (�)�	∈ 	 {0, 1} (e.g., 0 denotes “safe” and 1 
“harmful”) is a binary Inception model on  ����(�) for 
� = 1,… , � − 1 . Such integrated weak classifiers are 
typically found to be statistically superior to weak 
classifiers [41] in favor of low predictive signals (i.e., 
ambiguous separation). This is due to the fact that the 
algorithm, in principle, takes an advantage of data 
augmentation, say, exploiting multiple frames of difference 
residuals in the model, which advance single image-based 
CNNs. In Fig. 4. we outline the sequential flows to 
construct the integrative Inception architecture of the Deep 
Haze. For future interested readers, source codes are 
available online at author’s webpage 
(https://sites.google.com/site/sunghwanshome/).

In light of methodological standpoints, the fortes of the 
proposed model can be summarized to largely three points. 
(1) This method conceptually allows to predict particulate 

levels only by means of image data. No wonder, this 
circumvents the traditional method exploiting machine 
gadgets. (2) The algorithm based on residual difference is 
robust to light and temperature variations even though 
particulates are found highly subject to varying weather 
conditions. (3) Predictive performance is supposed to be 
stable in image analysis on account of the use of CNN-
based algorithms along with Inception schemes and 
ensemble techniques.

4. Experimental studies

In simulations, we assess some variants of the Deep 
Haze that utilize different frame number, and compare 
them to other popularly used classifies (e.g., random forest 
(RF), SVM based on linear kernels (SVM-linear) and radial
basis function (SVM-rbf) and weighted SVM (wSVM)
[43]). Out of 218 video sequences, we used for training 
78 video sequences (i.e., 39 safe and 39 harmful labels, 
respectively), and for testing 140 sequences (i.e., 101 
safe and 39 harmful labels, respectively). A range of 
experimental scenarios are taken into account to evaluate 
our algorithm’s universal applicability. Table 3 and 4 
encapsulates the predictive performance of the Deep 
Haze. It is evident to say that the proposed algorithm, 
when using all datasets, outstandingly distinguishes a 
harmful atmospheric condition with high accuracy (i.e., 
Deep Haze: 0.8286 ~ 0.8929, Random forest: 0.6500 ~

Table 2. Thumb nails of target regions where particulate 
matters are analyzed to construct the predictive 
model

Category Thumb nails
# of video 
sequences

Street 
regions

98

Construction 
site

60

Forest 
regions

60
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Table 4. Prediction accuracy of predictive models with an 
application to various video sequences.

# of frames 5 frames 10 frames 20 frames 40 frames

Street regions

Deep Haze 0.8214 0.8750 0.9286 0.9286

RF 0.5893 0.5893 0.6071 0.5893

SVM-rbf 0.6786 0.6786 0.6786 0.6786

SVM-linear 0.4643 0.4643 0.4464 0.4643

wSVM 0.5000 0.4643 0.4821 0.4464

Construction sites

Deep Haze 0.6667 0.7500 0.7917 0.7917

RF 0.6250 0.5833 0.5833 0.5417

SVM-rbf 0.5833 0.5833 0.5833 0.5833

SVM-linear 0.5000 0.5417 0.5833 0.5417

wSVM 0.4167 0.5417 0.5417 0.5000

Forest
Deep Haze 0.9000 0.9167 0.9333 0.9000

RF 0.7167 0.7667 0.7667 0.7333
SVM-rbf 0.8167 0.8167 0.8167 0.8167

SVM-linear 0.6167 0.6833 0.6333 0.6667
wSVM 0.6167 0.6667 0.6500 0.6833

All datasets
Deep Haze 0.8286 0.8714 0.9071 0.8929

RF 0.6500 0.6643 0.6714 0.6429
SVM-rbf 0.7214 0.7214 0.7214 0.7214

SVM-linear 0.5357 0.5714 0.5500 0.5643
wSVM 0.5357 0.5643 0.5643 0.5571

0.6429, SVM-rbf: 0.7214, SVM-linear: 0.5357~0.5714 and 
wSVM: 0.5357~0.5643) in Table 3 and and low false 
detection (i.e., Youden Index = Sensitivity + Specificity – 1, 

Fig. 5. ROC curves of the deep learning-based predictive 
model (DeepHaze), random forest (RF), SVM
based on linear kernels (SVM-linear) and 
weighted SVM (wSVM) on two classes (i.e., safe 
and harmful)

Deep Haze: 0.5892~0.7611, Random forest: -0.0460~-0.0063, 
SVM-rbf: 0, SVM-linear: -0.0487 ~ 0.0259 and wSVM: -
0.0132 ~ 0.0889) in Table 4 and Fig. 5.

4.1 Street regions

In this experiment, the proposed model applies to data 

Table 3. Sensitivity (Sen), Specificity (Spe) and Youden index (=Sensitivity + Specificity - 1) of predictive models with an 
application to various video sequences

# of frames 5 frames 10 frames 20 frames 40 frames

Street regions

Sen Spe Youden Sen Spe Youden Sen Spe Youden Sen Spe Youden

Deep Haze 0.6667 0.8947 0.5614 0.7222 0.9474 0.6696 0.8333 0.9737 0.8070 0.8333 0.9737 0.8070

RF 0.0000 0.8684 -0.1316 0.0000 0.8684 -0.1316 0.0000 0.8684 -0.1316 0.0000 0.8684 -0.1316

SVM-rbf 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

SVM-linear 0.1667 0.6053 -0.2281 0.1111 0.6316 -0.2573 0.0556 0.6316 -0.3129 0.0556 0.6579 -0.2865

wSVM 0.0556 0.6316 -0.3129 0.1111 0.6579 -0.2310 0.1111 0.6579 -0.2310 0.0556 0.6316 -0.3129

Construction sites

Deep Haze 0.7000 0.6429 0.3429 0.8000 0.7143 0.5143 0.8000 0.7857 0.5857 0.8000 0.7857 0.5857

RF 0.1000 1.0000 0.1000 0.0000 1.0000 0.0000 0.1000 0.9286 0.0286 0.1000 0.8571 -0.0429

SVM-rbf 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

SVM-linear 0.6000 0.4286 0.0286 0.3000 0.7143 0.0143 0.3000 0.7857 0.0857 0.3000 0.7143 0.0143

wSVM 0.6000 0.2857 -0.1143 0.3000 0.7143 0.0143 0.2000 0.7857 -0.0143 0.2000 0.7143 -0.0857

Forest

Deep Haze 0.8182 0.9184 0.7365 0.8182 0.9388 0.7570 0.8182 0.9592 0.7774 0.8182 0.9184 0.7365

RF 0.2727 0.8163 0.0891 0.2727 0.8776 0.1503 0.2727 0.8776 0.1503 0.2727 0.8367 0.1095

SVM-rbf 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

SVM-linear 0.8182 0.5714 0.3896 0.8182 0.6531 0.4712 0.7273 0.6122 0.3395 0.8182 0.6327 0.4508

wSVM 0.8182 0.5714 0.3896 0.7273 0.6531 0.3803 0.7273 0.6327 0.3599 0.8182 0.6531 0.4712

All datasets

Deep Haze 0.7179 0.8713 0.5892 0.7692 0.9109 0.6801 0.8205 0.9406 0.7611 0.8205 0.9208 0.7413

RF 0.1026 0.8614 -0.0360 0.1026 0.8812 -0.0162 0.1026 0.8911 -0.0063 0.1026 0.8515 -0.0460

SVM-rbf 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

SVM-linear 0.4615 0.5644 0.0259 0.3590 0.6535 0.0124 0.3077 0.6436 -0.0487 0.3333 0.6535 -0.0132

wSVM 0.5641 0.5248 0.0889 0.3333 0.6535 -0.0132 0.3333 0.6535 -0.0132 0.5641 0.5248 0.0889
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captured from street areas influenced exhaust emission. 
Exhaust emission is thought of as one of major man-made 
sources of particulates, meaning that we are likely to 
observe relative high particulate levels. Table 3 and 4 
shows the surpassing performance of the Deep Haze as 
compared to SVM and RFs. Note that the Deep Haze 
performs with high accuracy (0.8214-0.9286) as opposed 
to Random forest (0.5893), SVM-rbf (0.6786), SVM-linear 
(0.4643) and wSVM (0.5000). It is important to note that 
accuracy, as expected, tends to be increasing as the frames 
augmented from 5 to 40. Besides, the Deep Haze is 
superior to others with the low false detection (i.e., high 
Youden index; Deep Haze: 0.5614~0.8070, Random forest: 
-0.1316, SVM-rbf: 0, SVM-linear: -0.3129 ~ -0.2281 and 
wSVM: -0.3129 ~ -0.2310). Putting another way, the low 
Youden index values imply Random forest and SVM are 
not suite to image-based particulate prediction.

4.2 Construction sites

It is commonplace that vicinities of construction sites 
accompany a bulk of vehicles, facilities and industrial 
factories and so on. In this sense, chances are that 
construction areas are more likely to be influential to 
artificial pollutions even if common atmospheric factors 
are excluded. In addition, all other experiments (e.g., street 
regions, construction sites and forest) presents consistent 
messages of low false detection in Table 3 (i.e., Deep Haze: 
0.3429 ~ 0.5857, Random forest: -0.0429 ~ 0.1000, SVM-
rbf: 0, SVM-linear: 0.0143 ~ 0.0857 and wSVM: -0.1143 ~ 
0.0143). Interestingly, Random forest and SVM is found to 
be poor to detect harmful air sequences (i.e., low 
sensitivity) despite rather moderate accuracy. 

4.3 Forest areas

We hypothesize whether our predictive models are 
effectively applied to data from forest areas. It is plausible 
that residential areas are featured with an intermediate 
level of particulates as typically located at distant from 
construction zones and massively congested roads. 
Coherent to experiments above, Table 3 and 4 shows the 
the proposes models are superior in accuracy to SVM and 
RFs (i.e., Deep Haze: 0.8286 ~ 0.8929, Random forest: 
0.6500 ~ 0.6429, SVM-rbf: 0.7214, SVM-linear: 0.5357 
~ 0.5643 and wSVM: 0.5357~0.5571 and in low false 
detection (i.e., Deep Haze: 0.7365 ~ 0.7774, Random forest: 
0.0891~0.1503, SVM-rbf: 0, SVM-linear: 0.3395~0.4712 
and wSVM: 0.3599 ~ 0.4712).

5. Discussion and Conclusion

Of late, the concerns of high-concentration of particulate 
matters has been increasingly widespread across in vicinity 
of East Asia. In spite of low accessibility of particulate

measurements, there is still room that the vision-based 
predictive model can determine its quantity on the real time 
basis. With an emphasis of high applicability of vision data, 
we propose a predictive model that learns on video 
sequences to predict whether the level of particulates (PM10) 
in real time is harmful (>80μg/m� ) or not. To our best 
knowledge, no vision-based predictive model has been 
introduced in atmosphere research. In experiments, we 
confirm the Deep Haze and its variant methods outperform 
existing popular methods, and hence are shown to be 
trustworthy as a prediction model over particulate levels. 
Putting together, this outstanding performance suggests 
that our algorithm can potentially facilitate particulate 
monitoring down the road. Nonetheless, it is also found in 
our internal experiment that the proposed algorithm falls 
on false detection in case of low particulate signals 
especially in case of near-sighted scenes. Therefore, it is 
also interesting to see if haze removal algorithms [12] can 
handle this obstacle effectively. Importantly, this technique 
can be favorably extended to other areas, including the 
detection of chemical leaks, fire and smoke alarm and etc. 
For maximizing its utility, the Haze is planned embed into 
a potable go-to electronic gadget and will launch it with the 
fashion of phone application soon in pursuit of vision-
based (or partly vision-guided) monitoring system on 
particulates. By extension, the model can be extended to 
multi-class prediction to elaborately categorize con-
centration of particulates. To this end, another Inception-
type architecture can be possibly considered to improve 
accuracy. We leave these topics for future study.
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