Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.8.722

Recent Advances in Understanding the Mechanisms of Particulate Matter-mediated Ocular Diseases  

Lee, Hyesook (Anti-Aging Research Center, Dong-eui University)
Choi, Yung Hyun (Anti-Aging Research Center, Dong-eui University)
Publication Information
Journal of Life Science / v.30, no.8, 2020 , pp. 722-730 More about this Journal
Abstract
As one of the most serious health risk factors, air pollution can no longer be ignored. Particulate matter (PM) is an important and harmful component of air pollution that originates from a variety of sources. Numerous recent studies have linked PM to a range of conditions including cancer, cardiovascular, respiratory, and skin disease. The eye, despite being directly exposed to air pollution, has been investigated in very few of these studies. In this review, we describe the evidence from in vitro and in vivo studies, as well as epidemiological investigations, that supports the association between exposure to PM and the development of ocular conditions such as surface and retinal disease and glaucoma. Based on the results of previous studies, we suggest that PM exposure can lead to oxidative stress, inflammation, autophagy, and, ultimately, ocular surface disease. Nevertheless, almost no studies focus on ocular surface damage from PM while some epidemiological and clinical studies report on the posterior of the eye. However, the underlying pathological mechanisms in the posterior following PM exposure have yet to be identified, and further studies are therefore warranted of the ocular surface as well as the posterior part of the eye.
Keywords
Autophagy; inflammation; ocular diseases; oxidative stress; particulate matter;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ramirez, C. A., Perez-Martinot, M., Gil-Huayanay, D., Urrunaga-Pastor, D. and Benites-Zapata, V. A. 2018. Ocular exposure to particulate matter and development of pterygium: A case-control study. Int. J. Occup. Environ. Med. 9, 163-169.   DOI
2 Shah, A. S., Lee, K. K., McAllister, D. A., Hunter, A., Nair, H., Whiteley, W., Langrish, J. P., Newby, D. E. and Mills, N. L. 2015. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 350, h1295.   DOI
3 Somayajulu, M., Ekanayaka, S., McClellan, S. A., Bessert, D., Pitchaikannu, A., Zhang, K. and Hazlett, L. D. 2020. Airborne particulates affect corneal homeostasis and immunity. Invest. Ophthalmol. Vis. Sci. 61, 23.
4 Szyszkowicz, M., Kousha, T. and Castner, J. 2016. Air pollution and emergency department visits for conjunctivitis: a case-crossover study. Int. J. Occup. Med. Environ. Health 29, 381-393.   DOI
5 Tan, G., Li, J., Yang, Q., Wu, A., Qu, D. Y., Wang, Y., Ye, L., Bao, J. and Shao, Y. 2018. Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Sci. Rep. 8, 17828.   DOI
6 Tang, Y. J., Chang, H. H., Chiang, C. Y., Lai, C. Y., Hsu, M. Y., Wang, K. R., Han, H. H., Chen, L. Y. and Lin, D. P. 2019. A murine model of acute allergic conjunctivitis induced by continuous exposure to particulate matter 2.5. Invest. Ophthalmol. Vis. Sci. 60, 2118-2126.   DOI
7 Tau, J., Novaes, P., Matsuda, M., Tasat, D. R., Saldiva, P. H. and Berra, A. 2013. Diesel exhaust particles selectively induce both proinflammatory cytokines and mucin production in cornea and conjunctiva human cell lines. Invest. Ophthalmol. Vis. Sci. 54, 4759-4765.   DOI
8 Provost, E. B., Int Panis, L., Saenen, N. D., Kicinski, M., Louwies, T., Vrijens, K., De Boever, P. and Nawrot, T. S. 2017. Recent versus chronic fine particulate air pollution exposure as determinant of the retinal microvasculature in school children. Environ. Res. 159, 103-110.   DOI
9 Wang, N., Zimmerman, K., Raab, R. W., McKown, R. L., Hutnik, C. M., Talla, V., Tyler, M. F. 4th., Lee, J. K. and Laurie, G. W. 2013. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J. Biol. Chem. 288, 18146-18161.   DOI
10 Kim, S., Park, H., Park, H., Joung, B. and Kim, E. 2016. The acute respiratory exposure by intratracheal instillation of Sprague-Dawley rats with diesel particulate matter induces retinal thickening. Cutan. Ocul. Toxicol. 35, 275-280.   DOI
11 Wang, W., He, M., Li, Z. and Huang, W. 2019. Epidemiological variations and trends in health burden of glaucoma worldwide. Acta. Ophthalmol. 97, e349-e355.   DOI
12 Wang, Y., Zhong, Y., Hou, T., Liao, J., Zhang, C., Sun, C. and Wang, G. 2019. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol. Environ. Saf. 178, 159-167.   DOI
13 Willermain, F., Scifo, L., Weber, C., Caspers, L., Perret, J. and Delporte, C. 2018. Potential interplay between hyperosmolarity and inflammation on retinal pigmented epithelium in pathogenesis of diabetic retinopathy. Int. J. Mol. Sci. 19, 1056.   DOI
14 Wong, C. M., Tsang, H., Lai, H. K., Thomas, G. N., Lam, K. B., Chan, K. P., Zheng, Q., Ayres, J. G., Lee, S. Y., Lam, T. H. and Thach, T. Q. 2016. Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiol. Biomarkers Prev. 25, 839-845.   DOI
15 Wu, J., Chen, X., Liu, X., Huang, S., He, C., Chen, B. and Liu, Y. 2018. Autophagy regulates TGF-${\beta}2$-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells. Mol. Med. Rep. 17, 3607-3614.
16 Lee, K. W., Choi, Y. H., Hwang, S. H., Paik, H. J., Kim, M. K., Wee, W. R. and Kim, D. H. 2017. Outdoor air pollution and pterygium in Korea. J. Kor. Med. Sci. 32, 143-150.   DOI
17 Klopfer, J. 1989. Effects of environmental air pollution on the eye. J. Am. Optom. Assoc. 60, 773-778.
18 Kyung, S. Y. and Jeong, S. H. 2020. Particulate matter-related respiratory diseases. Tuberc. Respir. Dis (Seoul). 83, 116-121.   DOI
19 Lee, H., Hwang-Bo, H., Ji, S. Y., Kim, M. Y., Kim, S. Y., Park, C., Hong, S. H., Kim, G. Y., Song, K. S., Hyun, J. W. and Choi, Y. H. 2020. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ. Pollut. 262, 114301.   DOI
20 Leske, M. C., Wu, S. Y., Hennis, A., Honkanen, R., Nemesure, B. and BESs Study Group. 2008. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 115, 85-93.   DOI
21 Li, Z., Tang, Y., Song, X., Lazar, L., Li, Z. and Zhao, J. 2019, Impact of ambient PM2.5 on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 169, 248-254.   DOI
22 Liew, G., Wan, J. J., Mitchell, P. and Wong, T. Y. 2008. Retinal vascular imaging a new tool in microvascular disease research. Circ. Cardiovasc. Imaging 1, 156-161.   DOI
23 Kels, B. D., Grzybowski, A. and Grant-Kels, J. M. 2015. Human ocular anatomy. Clin. Dermatol. 33, 140-146.   DOI
24 Bron, A. J., Tripathi, R. C. and Tripathi, B. J. 1997. The ocular append-ages: eyelids, conjunctiva and lacrimal apparatus. Wolff's Anatomy of the Eye and Orbit., 8th ed. Chapman and Hall Medical, London, United King, 30-84.
25 Xiang, P., He, R. W., Han, Y. H., Sun, H. J., Cui, X. Y. and Ma, L. Q. 2016. Mechanisms of housedust-induced toxicity in primary human corneal epithelial cells: Oxidative stress, proinflammatory response and mitochondrial dysfunction. Environ. Int. 89-90, 30-37.   DOI
26 Thylefors, B., Negrel, A. D., Pararajasegaram, R. and Dadzie, K. Y. 1995. Global data on blindness. Bull. World Health Organ. 73, 115-121.
27 A Gutierrez, M., Giuliani, D., Porta, A. and Andrinolo, D. 2019. Relationship between ocular surface alterations and concentrations of aerial particulate matter. J. Ophthalmic. Vis. Res. 14, 419-427.
28 Adar, S. D., Klein, R., Klein, B. E., Szpiro, A. A., Cotch, M. F., Wong, T. Y., O'Neill, M. S., Shrager, S., Barr, R. G., Siscovick, D. S., Daviglus, M. L., Sampson, P. D. and Kaufman, J. D. 2010. Air pollution and the microvasculature: a crosssectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA). PLoS Med. 7, e1000372.   DOI
29 Boulton, M. and Dayhaw-Barker, P. 2001. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15, 384-389.   DOI
30 Bradley, J. C., Yang, W., Bradley, R. H., Teid, T. W. and Schwab, I. R. 2010. The science of pterygia. Br. J. Ophthalmol. 94, 815-820.   DOI
31 Chang, K. H., Hsu, P. Y., Lin, C. J., Lin, C. L., Juo, S. H. and Liang, C. L. 2019. Traffic-related air pollutants increase the risk for age-related macular degeneration. J. Investig. Med. 67, 1076-1081.   DOI
32 Chen, Y., Li, M., Li, B., Wang, W., Lin, A. and Sheng, M. 2013. Effect of reactive oxygen species generation in rabbit corneal epithelial cells on inflammatory and apoptotic signaling pathways in the presence of high osmotic pressure. PLoS One 8, e72900.   DOI
33 Chen, Z. H., Wu, Y. F., Wang, P. L., Wu, Y. P., Li, Z. Y., Zhao, Y., Zhou, J. S., Zhu, C., Cao, C., Mao, Y. Y., Xu, F., Wang, B. B., Cormier, S. A., Ying, S. M., Li, W. and Shen, H. H. 2016. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy 12, 297-311.   DOI
34 Chi, Y., Huang, Q., Lin, Y., Ye, G., Zhu, H. and Dong, S. 2018. Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze River Delta region in China on human bronchial epithelial cells. J. Environ. Sci. (China) 66, 155-164.   DOI
35 2016. Ambient air pollution: A global assessment of exposure and burden of disease. World health organization. Available at, http://who.int/phe/publications/air-pollution-global-assessment/en/
36 Amoatey, P., Omidvarborna, H., Baawain, M. S. and Al-Mamun, A. 2018. Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review. Environ. Int. 121, 491-506.   DOI
37 Atkinson, R. W., Mills, I. C., Walton, H. A. and Anderson, H. R. 2015. Fine particle components and health - a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 25, 208-214.   DOI
38 Zhen, A. X., Piao, M. J., Hyun, Y. J., Kang, K. A., Madushan Fernando, P. D. S., Cho, S. J., Ahn, M. J. and Hyun, J. W., 2019. Diphlorethohydroxycarmalol attenuates fine particulate matter-induced subcellular skin dysfunction. Mar. Drugs 17, 95.   DOI
39 Zhu, X., Ji, X., Shou, Y., Huang, Y., Hu, Y. and Wang, H. 2020. Recent advances in understanding the mechanisms of PM2.5-mediated neurodegenerative diseases. Toxicol. Lett. 329, 31-37.   DOI
40 2006. WHO's global air-quality guidelines. Lancet 368, 1302.
41 2020. Environment at a Glance Indicators-Air quality. http://www.oecd.org/environment/environment-at-aglance/Air-Quality-Archive-January-2020.
42 Chinnery, H. R., McMenamin, P. G. and Dando, S. J. 2017. Macrophage physiology in the eye. Pflugers. Arch. 469, 501-515.   DOI
43 Craig, J. P., Nichols, K. K., Akpek, E. K., Caffery, B., Dua, H. S., Joo, C. K., Liu, Z., Nelson, J. D., Nichols, J. J., Tsubota, K. and Stapleton, F., 2017. TFOS DEWS II definition and classification report. Ocul. Surf. 15, 276-283.   DOI
44 Choi, Y. H., Park, S. J., Paik, H. J., Kim, M. K., Wee, W. R. and Kim, D. H. 2018. Unexpected potential protective associations between outdoor air pollution and cataracts. Environ. Sci. Pollut. Res. Int. 25, 10636-10643.   DOI
45 Chua, S., Khawaja, A. P., Morgan, J., Strouthidis, N., Reisman, C., Dick, A. D., Khaw, P. T., Patel, P. J. and Foster, P. J., UK Biobank Eye and Vision Consortium. 2019. The relationship between ambient atmospheric fine particulate matter (PM2.5) and glaucoma in a large community cohort. Invest. Ophthalmol. Vis. Sci. 60, 4915-4923.   DOI
46 Chua, S., Khawaja, A. P., Dick, A. D., Morgan, J., Dhillon, B., Lotery, A. J., Strouthidis, N. G., Reisman, C., Peto, T., Khaw, P. T., Foster, P. J. and Patel, P. J. 2020, UK Biobank Eye and Vision Consortium. 2020. Ambient air pollution associations with retinal morphology in the UK Biobank. Invest. Ophthalmol. Vis. Sci. 61, 32.
47 Crobeddu, B., Aragao-Santiago, L., Bui, L. C., Boland, S. and Baeza Squiban, A. 2017. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 230, 125-133.   DOI
48 Cho, C. C., Hsieh, W. Y., Tsai, C. H., Chen, C. Y., Chang, H. F. and Lin, C. S. 2018. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int. J. Environ. Res. Public. Health 15, 1380.   DOI
49 Yang, Q., Li, K., Li, D., Zhang, Y., Liu, X. and Wu, K. 2019. Effects of fine particulate matter on the ocular surface: An in vitro and in vivo study. Biomed. Pharmacother. 117, 109177.   DOI
50 Cromar, K. R., Gladson, L. A. and Ewart, G. 2019. Trends in excess morbidity and mortality associated with air pollution above American Thoracic Society-Recommended Standards, 2008-2017. Ann. Am. Thorac. Soc. 16, 836-845.   DOI
51 Ding, J., Wai, K .L., McGeechan, K., Ikram, M. K., Kawasaki, R., Xie, J., Klein, R., Klein, B. B., Cotch, M. F., Wang, J. J., Mitchell, P., Shaw, J. E., Takamasa, K., Sharrett, A. R., Wong, T. Y. and Meta-Eye Study Group. 2014. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J. Hypertens. 32, 207-215.   DOI
52 DelMonte, D. W. and Kim, T. 2011. Anatomy and physiology of the cornea. J. Cataract Refract. Surg. 37, 588-598.   DOI
53 Deng, X., Zhang, F., Rui, W., Long, F., Wang, L., Feng, Z., Chen, D. and Ding, W. 2013. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. In Vitro 27, 1762-1770.   DOI
54 Deng, X., Zhang, F., Wang, L., Rui, W., Long, F., Zhao, Y., Chen, D. and Ding, W. 2014. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis 19, 1099-1112.   DOI
55 Cui, Y. H., Hu, Z. X., Gao, Z. X., Song, X. L., Feng, Q. Y., Yang, G., Li, Z. J. and Pan, H. W. 2018. Airborne particulate matter impairs corneal epithelial cells migration via disturbing FAK/RhoA signaling pathway and cytoskeleton organization. Nanotoxicology 12, 312-324.   DOI
56 Eperon, S., Berguiga, M., Ballabeni, P., Guex-Crosier, C. and Guex-Crosier, Y. 2014. Total IgE and eotaxin (CCL11) contents in tears of patients suffering from seasonal allergic conjunctivitis. Graefes. Arch. Clin. Exp. Ophthalmol. 252, 1359-1367.   DOI
57 Farjo, A., McDermott, M. and Soong, H. K. 2009. Corneal anatomy, physiology, and wound healing: Ophthalmology, 3rd ed. Yanoff, M., Duke,r J. S., eds. Elsevier Inc., Edinburgh, London, United Kingdom. 203-208.
58 Franklin, B. A., Brook, R. and Arden Pope, C.3rd. 2015. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 40, 207-238.   DOI
59 Fujishima, H., Satake, Y., Okada, N., Kawashima, S., Matsumoto, K. and Saito, H. 2013. Effects of diesel exhaust particles on primary cultured healthy human conjunctival epithelium. Ann. Allergy Asthma. Immunol. 110, 39-43.   DOI
60 Fu, Q., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Lou, X., Chen, Z. and Yao, K. 2017. Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environ. Pollut. 227, 314-322.   DOI
61 Gao, Z. X., Song, X. L., Li, S. S., Lai, X. R., Yang, Y. L., Yang, G., Li, Z. J., Cui, Y. H. and Pan, H. W. 2016. Assessment of DNA damage and cell senescence in corneal epithelial cells exposed to airborne particulate matter (PM2.5) collected in Guangzhou, China. Invest. Ophthalmol. Vis. Sci. 57, 3093-3102.   DOI
62 Karnati, R., Talla, V., Peterson, K. and Laurie, G. W. 2016. Lacritin and other autophagy associated proteins in ocular surface health. Exp. Eye Res. 144, 4-13.   DOI
63 Halonen, J. I., Lanki, T., Yli-Tuomi, T., Tiittanen, P., Kulmala, M. and Pekkanen, J. 2009. Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology 20, 143-153.   DOI
64 Holland, E. J., Mannis, M. J. and Lee, W. B. 2013. Historical concepts of ocular surface disease: Ocular surface disease: cornea, conjunctiva and tear film. Lee, W. B., Mannis, M. J., Holland, E. J., eds. Elsevier Inc., Edinburgh, London, United Kingdom. 3-10.
65 Jung, S. J., Mehta, J. S. and Tong, L. 2018. Effects of environment pollution on the ocular surface. Ocul. Surf. 16, 198-205.   DOI
66 Fu, Q., Mo, Z., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Xu, P., Wu, L., Lou, X., Chen, Z. and Yao, K. 2017. Air pollution and outpatient visits for conjunctivitis: A casecrossover study in Hangzhou, China. Environ. Pollut. 231, 1344-1350.   DOI
67 Pan, S. C., Huang, C. C., Chin, W. S., Chen, B. Y., Chan, C. C. and Guo, Y. L. 2020. Association between air pollution exposure and diabetic retinopathy among diabetics. Environ. Res. 181, 108960.   DOI
68 Louwies, T., Panis, L. I., Kicinski, M., De Boever, P. and Nawrot, T. S. 2013. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ. Health. Perspect. 121, 1011-1016.   DOI
69 Min, K. B. and Min, J. Y. 2020. Association of ambient particulate matter exposure with the incidence of glaucoma in childhood. Am. J. Ophthalmol. 211, 176-182.   DOI
70 Mo, Z., Fu, Q., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Xu, P., Wu, L., Wang, X., Lou, X., Chen, Z. and Yao, K. 2019. Impacts of air pollution on dry eye disease among residents in Hangzhou, China: A case-crossover study. Environ. Pollut. 246, 183-189.   DOI
71 Park, J. H., Troxel, A. B., Harvey, R. G. and Penning, T. M. 2006. Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem. Res. Toxicol. 19, 719-728.   DOI
72 Park, C. G., Cho, H. K., Shin, H. J., Park, K. H. and Lim, H. B. 2018. Comparison of mutagenic activities of various ultra-fine particles. Toxicol. Res. 34, 163-172.   DOI
73 Parzych, K. R. and Klionsky, D. J. 2014. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 20, 460e473.   DOI
74 Pavan, B. and Dalpiaz, A. 2018. Retinal pigment epithelial cells as a therapeutic tool and target against retinopathies. Drug Discov. Today 23, 1672-1679.   DOI
75 Livingston, P. M., McCarty, C. A. and Taylor, H. R. 1997. Visual impairment and socioeconomic factors. Br. J. Ophthalmol. 81, 574-577.   DOI