• 제목/요약/키워드: Particulate Composites

검색결과 117건 처리시간 0.021초

용탕교반법에 의한 SiC 입자강화 Mg기 복합재료의 기계적 특성 (Mechanical Properties of SiC Particulate Reinforced Mg Matrix Composites Fabricated by Melt Stirring Method)

  • 임석원;장융랑;박용진
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.441-449
    • /
    • 1993
  • SiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effet of several factors on mechanical properties and the efficiency of melt stirring method from the viewpoint of these properties were investigated. The tensile strength increased and the elongation decreased with decrease of the particle size or the increase of the paticulate volume fraction for pure magnesium matrix and Mg-5%Zn alloy matrix composites. A longer stirring time improved the tensile strength of these composites. The tensile strength of Mg-5%Ca alloy matrix composites which shows no uniform paticulate distribution was a little lower than that of matrix alloy. Rapid solidification rate is preferred for the improved tensile strength of these composites. The pure magnesium matrix and Mg-5%Zn alloy matrix composites have tensile strength of about 400MPa. This value agrees with the tensile strength of some magnesium matrix composites fabricated by liquid infiltration method or powder metallurgy method at the same volume fraction of reinforcements of whisker or particle. Therefore, the melt stirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

Effects of the SiC Particle Size and Content on the Sintering and Mechanical Behaviors of $Al_2O_3$/SiC Particulate Composites

  • Ryu, Jung-Ho;Lee, Jae-Hyung
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.199-207
    • /
    • 1997
  • $Al_2O_3$/SiC particulate composites were fabircated by pressureless sintering. The dispersed phase was SiC of which the content was varied from 1.0 to 10 vol%. Three SiC powders having different median diameters from 0.28 $\mu\textrm{m}$ to 1.9 $\mu\textrm{m}$ were used. The microstructure became finer and more uniform as the SiC content increased except the 10 vol% specimens, which were sintered at a higher temperature. Under the same sintering condition, densification as well as grain growth was retarded more severly when the SiC content was higher or the SiC particle size was smaller. The highest flexural strength obtained at 5.0 vol% SiC regardless of the SiC particle size seemed to be owing to the finer and more uniform microstructures of the specimens. Annealing of the specimens at $1300^{\circ}C$ improved the strength in general and this annealing effect was good for the specimens containing as low as 1.0 vol% of SiC. Fracture toughness did not change appreciably with the SiC content but, for the composites containing 10 vol% SiC, a significantly higher toughness was obtained with the specimen containing 1.9$\mu\textrm{m}$ SiC particles.

  • PDF

SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동 : I. 실험 (R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: I. Experiment)

  • 박관수;이승환;이재형
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.359-367
    • /
    • 2000
  • Particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC have been fabricated to investigate their R-curve behaviors and toughening mechanisms. Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ showed rising R-curve behavior owing to the strong crack bridging by SiC particles. The fracture toughness reached 9.1 MPa {{{{ SQRT {m} }} at the crack length of 1000${\mu}{\textrm}{m}$. On the other hand, ZrO2-toughened Al2O3 had a high flat R-curve since it rose steeply in the short crack region due to the well known transformation toughening. For Al2O3/ZrO2/SiC composites, the R-curve behavior was similar to that of Al2O3/SiC but with slightly higher toughness. The SiC particles in this composite decreased the amount of transformable tetragonal phase to reduce the effect of transformation toughening by 50%. It was also found that the fracture toughness of this composite with two different toughening mechanisms was markedly lower than that estimated by the simple addition of two contributions.

  • PDF

탄화규소/7091알루미늄 복합재료의 부식거동 (Corrosion Behavior of Silicon Carbide/7091 Aluminum Matrix Composites)

  • 강우승
    • Corrosion Science and Technology
    • /
    • 제11권4호
    • /
    • pp.108-111
    • /
    • 2012
  • The effects of volume fraction (15-30%) of SiC particulate reinforcements on the corrosion behavior of SiCp/7091 Al composites in the 3.5% NaCl solution were studied by electrochemical techniques and scanning electron microscopy. The results showed that the amount of SiC particulate reinforcements did not cause much difference in the corrosion behavior of SiCp/7091 Al composites but the corrosion rate was proportional to the amount of SiCp reinforcement. And numerous pits and severe dissolution of the matrix was observed probably due to the discontinuities and galvanic effects between Al matrix and SiC reinforcements.

무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성 (Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by Pressureless Metal Infiltration Process)

  • 김재동;정순억;김형진
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.379-384
    • /
    • 2002
  • The effect of size and volume fraction of ceramic particles with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by pressureless infiltration process. The particulate metal matrix composites exhibited about 5.5 - 6 times of excellent wear resistance compared with AC8A alloy at high sliding velocity, and as increasing the particle size and decreasing the volume fraction the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity linearly. whereas metal matrix composites indicated more wear loss than AC8A alloy at slow velocity region, however a transition point of wear loss was found at middle velocity region which show the minimum wear loss, and wear loss at high velocity region exhibited nearly same value with slow velocity region. In terms of wear mechanism, the metal matrix composites exhibited the abrasive wear at slow to high sliding velocity generally, however AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.

  • PDF

Frequency Dependent Magnetoelectric Responses in [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] Particulate Composites

  • Choi, Moon Hyeok;Noh, Byung Il;Yun, Woosik;Jung, Chaewon;Yang, Su Chul
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.303-307
    • /
    • 2022
  • Magnetoelectric (ME) properties of 3-0 type particulate composites have been investigated with respect to application features for reliable magnetic sensitivity and magnetically-induced output voltage. In order to figure out the magnetoelectric characteristics in the ME composites, frequency dependent ME responses were studied from [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] (NKNLS)/Co1-xZnxFe2O4 (CZFO, x=0, 0.1, and 0.2). As a result, the maximal αME of 23.15 mV/cm·Oe was achieved from the NKNLS-CZFO (xZn = 0.1) composites at resonance frequency of 315 kHz and Hdc = 0 Oe. From the frequency dependent ME responses, it is clearly described that the self-biased ME composites can be used for applications as both magnetic sensors and energy harvesters, respectively.

SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동: II. 이론적 분석 (R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: II. Theoretical Analysis)

  • 나상웅;이재형
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.368-375
    • /
    • 2000
  • Fracture toughness of particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC was analysed theoretically. According to the suggested particle bridging model for obtaining the R-curve height, the crack extension resistance for the long crack was linearly proportional to the residual calmping stress at the interface between the second phase and the matrix. It was also a function of the particle size and the content. It was confirmed that the rising R-curve behavior of Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ was owing to the strong crack bridging by SiC particles. For Al2O3/ZrO2/SiC composites, the tensional stress from the 3${\mu}{\textrm}{m}$ SiC particles was large enough to activate the spontaneous transformation of the ZrO2. The crack extension resistance due to the particle bridging mechanism did not seem to be affected much by the coupled toughening, but its resultant toughness increase could be significantly smaller due to the dependency on the matrix toughness.

  • PDF

Al$_2$O$_3$/t-ZrO$_2$ 입자복합체의 미세구조 및 기계적 성질 (Microstructure and Mechanical Properties of $Al_2$O$_3$/t-ZrO$_2$ Particulate Composites)

  • 심동훈;이윤복;김영우;오기동;박홍채
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.734-741
    • /
    • 1999
  • Al2O3와 t-ZrO2 분말의 압분체를 공기중 150$0^{\circ}C$ 및 1$600^{\circ}C$에서 2시간 소결하여 제조된 입자복합체의 미세구조와 기계적 성질을 조사하였다. 소수의 미세한 구상의 ZrO2입자는 Al2O3의 입내에 존재하였으나 대분분은 입계에 존재하여 Al2O3의 입계를 고정시키는 것이 가능하였고, 따라서 Al2O3의 입성장을 둔화시켰다. 소결할 동안 입계 ZrO2 입자의 조대회는 응집된 ZrO2 입자내에서의 입계의 소멸과 Al2P3 입계의 이동에 의해서 끌어 당겨진 ZrO2 입자의 합체(coalescence)에 의해서 일어날 수 있었다. ZrO2의 첨가에 의한 Al2O3의 기계적 성질의 변화는 기지상인 Al2O3의 미세구조와 분산된 ZrO2 입자의 크기와 구조에 의존하였다.

  • PDF

SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향 (Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites)

  • 심상한;정용근;박익민
    • 한국주조공학회지
    • /
    • 제10권1호
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF

반응생성 합성에 의한 (TiB+TiC) 입자강화 Ti기 복합재료의 미세조직 및 인장특성 평가 (Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites)

  • 최봉재;김영직
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.780-789
    • /
    • 2010
  • The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.