• Title/Summary/Keyword: Particles size

Search Result 4,001, Processing Time 0.032 seconds

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF

Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data (MODIS와 TOMS자료를 이용한 2001년 동북아시아 지역의 대기 에어로졸 모니터링)

  • 이권호;홍천상;김영준
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.77-89
    • /
    • 2004
  • The spatial and temporal variations of aerosol optical depth (AOD) over Northeast Asia regions have special importance in the aerosol research for estimation of aerosol radiative forcing parameters and climate change. Aerosol optical and physical properties (AOD and ${\AA}$ngstrom parameter) have been investigated by using Moderate Resolution Imaging Spectroradiometer (MODIS) and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) to estimate aerosol characteristics over the study region during 2001. Additionally, aerosol characteristics over the Korean peninsular during Aerosol Characteristic Experiment in Asia (ACE-Asia) Intensive Observation Period (IOP) have been investigated by using satellite observations. The results showed that the daily-observed aerosol data indicate seasonal variations with relatively higher aerosol loading in the spring and very low during the winter. The typical Asian dust case showed higher AOD (>0.7) with lower Angstrom exponent (<0.5) and higher AI (>0.5) that is mainly due to the composition of coarse particles in the springtime. Mean AOD for 2001 at 4 different places showed 0.65$\pm$0.37 at Beijing, 0.31$\pm$0.19 at Gosan, 0.54$\pm$0.26 at Seoul, and 0.38$\pm$0.19 at Kwangju, respectively. An interesting result was found in the present study that polluted aerosol events with small size dominated-aerosol loading around the Korean peninsular are sometimes observed. The origin of these polluted aerosols was thought to East China. Aerosol distribution from satellite images and trajectory results shows the proof of aerosol transport. Therefore, aerosol monitoring using satellite data is very useful.

(U-Th)/He Dating: Principles and Applications ((U-Th)/He 연령측정법의 원리와 응용)

  • Min, Kyoung-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.239-247
    • /
    • 2014
  • The (U-Th)/He dating utilizes the production of alpha particles ($^4He$ atoms) during natural radioactive decays of $^{238}U$, $^{235}U$ and $^{232}Th$. (U-Th)/He age can be determined from the abundances of the parent nuclides $^{238}U$, $^{235}U$ and $^{232}Th$ and the radiogenic $^4He$. Because helium is one of the noble gases (non-reactive) with a relatively small radius, it diffuses rapidly in many geological materials, even at low temperatures. Therefore, ingrowth of $^4He$ during radioactive decay competes with diffusive loss at elevated temperatures during the geologic time scale, determining the amount of $^4He$ existing today in natural samples. For example, He diffusion in apatite is known to be very rapid compared to that in most other minerals, causing a significant diffusive loss at ${\sim}80^{\circ}C$ or higher. At ${\sim}40^{\circ}C$, He diffusion in apatite becomes slow enough to preserve most $^4He$ in the sample. Thus, an apatite's (U-Th)/He age represents the timing when the sample passed through the temperature range of $80-40^{\circ}C$. The crustal depth corresponding to this temperature range is called a "partial retention zone." Normal closure temperatures for a typical grain size and cooling rate are ${\sim}60-70^{\circ}C$ for apatite and ${\sim}200^{\circ}C$ for zircon and titanite. Because the apatite He closure temperature is lower than that of most other thermochronometers, it can provide critical constraints on relatively recent or shallow-crustal exhumation histories.

Evaluating the Applicability of Activated Carbon-added Fiberboard Filters Fabricated with Lignocellulosic Fiber for the Reduction Equipment of Particulate Matter (리그노셀룰로오스 섬유 기반 활성탄-첨가 섬유판 필터의 미세먼지 저감장치용 적용가능성 평가)

  • Yang, In;So, Jae min;Hwang, Jeong Woo;Choi, Joon weon;Lee, Young-kyu;Choi, Wonsil;Oh, Seung Won;Moon, Myoung cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.548-556
    • /
    • 2021
  • This study was conducted to investigate the applicability of lignocellulosic fiber and coconut shell activated carbon (CSA) for the production of a particulate matter (PM)-reducing air-filter as raw materials to solve the environmental problems of non-woven fabrics. CSA had a good potential to use as a raw material of air-filter for reducing volatile organic compounds as well as noxious metals, and reduction capability of the CSA was 5 times higher than that of wood fiber. Natural adhesives formulated with proteinaceous wastes mostly were applied successfully to fabricate air-filters with the shape of fiberboard. The air-filter fabricated with the minimum target density of 200 kg/m3 and the maximum CSA-content of 40 wt% in fiberboard had a good manageable strength. However, the fiberboard filters was required to make vent-holes for improving an air-permeability of the filters. Size of the CSA particles was adjusted to greater than 2 mesh with the consideration of strength and formability of the fiberboard. Three-layers fiberboard that only wood fiber and the mixture of wood fiber and CSA were formed in the surface and middle layers, respectively, was determined to the optimal condition for the production of air-filters. In addition, traditional Korean paper handmade from mulberry trees (TKP) showed a good PM-reducing property as an air-filter. It is concluded that air-filtering set composed of fiberboard with vent-holes and TKP instead of conventional air-filters made with non-woven fabrics can be used as a filter for reducing the concentrations of PM, VOC and noxious metals existed in indoor and outdoor spaces.

Skin Permeability of Petroselinum Crispum Extract Using Polymer Micelles and Epidermal Penetration Peptide (고분자 미셀과 경피투과 펩티드를 이용한 파슬리 추출물의 피부흡수 효과)

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.265-275
    • /
    • 2019
  • This study was conducted to investigate physiological activity and its skin permeability of Petroselinum crispum extract using polymer micelles and cell penetrating peptide. In the antioxidant test, the total concentrations of polyphenol compounds were determined to be $121.68{\pm}2.49mg/g$ (for ethanol extract and), $72.42{\pm}1.52mg/g$ (for hydrothermal extract.). The DPPH radical scavenging ability was $90.48{\pm}0.46%$ (for ethanol extract) and $83.92{\pm}0.13%$ (for hydrothermal extract) at 2000 mg/L. ABTS radical scavenging ability was $91.08{\pm}0.14%$ for ethanol extract ethanol extract, which is higher than that of hydrothermal extract at 800 mg/L ($69.63{\pm}0.55%$). In the SOD experiments, the P. crispum ethanol extract showed higher SOD activity than that of the P. crispum hydrothermal extract at all concentrations.. At a concentration of 16,000 mg/L, P. crispum ethanol extract showed the highest SOD activity of $128.45{\pm}0.70%$. The elastase inhibitory assay also showed concentration dependence and elastase inhibition of P. crispum ethanol extract was $99.99{\pm}1.54%$, which was the highest at 2,000 mg/L. To solve the problem of insolubility and to improve skin permeability of the extract, PCL-PEG polymer micelle containing P. crispum ethanol extracts and 1% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with a particle size of 40.10 nm. In the results of 24 hours of skin permeation experiment, total accumulated beta-carotene amounts showed $37.99{\mu}g/cm^2$ in Petroselinum crispum extracts and $68.38{\mu}g/cm^2$ (1.8 times) in P. crispum extract of the particles.

Study on Physical Change in the Earthen Finish Layer of Tomb Murals Due to Drying (건조에 따른 고분벽화 토양 마감층의 물리적 변화)

  • Cho, Ha-Jin;Lee, Tae-Jong;Lee, Hwa-Soo;Chung, Yong-Jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.148-165
    • /
    • 2017
  • Mural paintings drawn inside ancient tombs are very sensitive to changes in the environment such as temperature and humidity, especially the finish layer of the tomb murals differ in preservability depending on the material properties and humidity conditions. In this study, I examined the mural painting of Songsan-ri Tomb No.6, where the finish layer was made of earth, and identified the physical changes that can occur due to drying, depending on the material properties of the finish layer. I found out through particle size analysis that the finish layer of the mural painting in Songsan-ri Tomb No.6 is about 85.0wt% below silt, about 14.0wt% clay therein, mostly composed of silt and below clay. I also found out through physical property evaluation that surface change rate of samples showed the largest change at 15.5% in reproduced finish layer sample made up of bentonite, followed by 7.8% of reproduced finish layer sample made up of celadon soil, 6.3% of reproduced finish layer sample made up of loess, 6.2% of reproduced finish layer sample composed of white clay and the same order of change in appearance was confirmed in each sample consisted of soil. In addition, it showed the same trend of surface change rate, and the bentonite condition showed the largest change, in the measurement of shrinkage rate and expansion rate. The experiment shows that the finish layer composed of soil is affected by cohesion among particles according to the content of fine parts and the relationship between the agglomeration due to the content of the differentiated part and the stress due to the expansibility depending on the kind of the clay mineral etc. Therefore, it can be concluded that the physical damage occurred in the mural painting finish layer of the Songsan-ri Tomb No.6 is related to the factors such as the material characteristics of the soil and the highly humid environmental change inside the tomb.

The Morphologic Characteristics of Step-pool Structures in a Steep Mountain Stream, Chuncheon, Gangwon-do (강원도 춘천시 근교의 산지계류에 형성된 계단상 하상구조의 특징)

  • Kim, Suk Woo;Chun, Kun Woo;Park, Chong Min;Nam, Soo Youn;Lim, Young Hyup;Kim, Young Seol
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.202-211
    • /
    • 2011
  • The geometric characteristics of step-pool structures and how they are influenced by channel characteristics were investigated in a steep mountain stream in the Experimental Forests of Kangwon National University in Chuncheon, Gangwon-do. Average values of steps for the study reaches were as follows: step spacing, 4.69 m; step height, 0.47 m; step drop, 0.71 m; step-forming particle sizes, 0.68 m; number, 21steps/ 100 m; the ratio of step spacing to channel width, 0.5; and step steepness, 0.13. Relationships between spacing and height of steps and channel gradient showed a negative- and positive correlation, respectively, whereas all geometric variables of steps manifested poor correlation with channel width. Therefore, step steepness, expressed as the ratio of step height to step spacing, increased as channel gradient increased. The ratio of step steepness to channel gradient representing the criterion of maximum flow resistance was 1.2, indicating the channel bed's stable condition. In particular, the relationship between the ratio of step drop to step height and channel gradient showed a significant negative correlation, suggesting the influence of step-pool geometry in trapping sediment and providing an aquatic habitat. Positive correlations also exist between spacing and drop of steps and step particles. Our findings suggest that the dynamics of step-pool structures may strongly control physical and ecological environments in steep mountain streams, so understanding them is essential for stream management.

Meiobenthic community structure in the coastal area of Hallyeohaesang National Park (한려해상국립공원 해역에 서식하는 중형저서동물의 계절별 군집 변동 특성)

  • Teawook Kang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.125-137
    • /
    • 2022
  • To assess the characteristics of meiofaunal community fluctuations related to environmental factors, seasonal surveys were conducted in the subtidal zone of Hallyeohaesang National Park. The average depth of the study area was about 20 m, and the average water temperature at the bottom was low in winter(11.33℃) and high in summer(17.95℃). The sedimentary particles mainly comprised silt and clay at most stations. The abundance of meiofauna ranged from 81.7 to 1,296.5 Inds. 10 cm-2, and the average abundance was 589.3 Inds. 10 cm-2. The average abundance of meiofauna in each season was the lowest at 416.5 Inds. 10cm-2 in winter and the highest at 704.5Inds.10 cm-2 in spring. The dominant taxa were nematodes (about 92%) and harpacticoids (about 5%). In the cluster analysis of meiofaunal communities, they were divided into four significant groups. The largest group mainly contained spring and summer samples, and contained stations with a high nematode density of over 500 Inds. 10 cm-2 and harpacticoids below 50 Inds. 10 cm-2 with a high composition ratio of nematodes. In the cluster analysis, no regional division was found between the stations, and it was thought to be divided by the seasons with high abundance according to seasonal variation and the composition ratio of nematodes and harpacticoids. In the Spearman rank correlation analysis, the density of total meiofauna and the most dominant taxa, nematodes, was not significantly related to environmental factors. However, the density of harpacticoids had a significant positive correlation with water depth and a negative correlation with sediment particle size.

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF

THE RELATIONSHIP BETWEEN PARTICLE INJECTION RATE OBSERVED AT GEOSYNCHRONOUS ORBIT AND DST INDEX DURING GEOMAGNETIC STORMS (자기폭풍 기간 중 정지궤도 공간에서의 입자 유입률과 Dst 지수 사이의 상관관계)

  • 문가희;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2003
  • To examine the causal relationship between geomagnetic storm and substorm, we investigate the correlation between dispersionless particle injection rate of proton flux observed from geosynchronous satellites, which is known to be a typical indicator of the substorm expansion activity, and Dst index during magnetic storms. We utilize geomagnetic storms occurred during the period of 1996 ~ 2000 and categorize them into three classes in terms of the minimum value of the Dst index ($Dst_{min}$); intense ($-200nT{$\leq$}Dst_{min}{$\leq$}-100nT$), moderate($-100nT{\leq}Dst_{min}{\leq}-50nT$), and small ($-50nT{\leq}Dst_{min}{\leq}-30nT$) -30nT)storms. We use the proton flux of the energy range from 50 keV to 670 keV, the major constituents of the ring current particles, observed from the LANL geosynchronous satellites located within the local time sector from 18:00 MLT to 04:00 MLT. We also examine the flux ratio ($f_{max}/f_{ave}$) to estimate particle energy injection rate into the inner magnetosphere, with $f_{ave}$ and $f_{max}$ being the flux levels during quiet and onset levels, respectively. The total energy injection rate into the inner magnetosphere can not be estimated from particle measurements by one or two satellites. However, the total energy injection rate should be at least proportional to the flux ratio and the injection frequency. Thus we propose a quantity, “total energy injection parameter (TEIP)”, defined by the product of the flux ratio and the injection frequency as an indicator of the injected energy into the inner magnetosphere. To investigate the phase dependence of the substorm contribution to the development of magnetic storm, we examine the correlations during the two intervals, main and recovery phase of storm separately. Several interesting tendencies are noted particularly during the main phase of storm. First, the average particle injection frequency tends to increase with the storm size with the correlation coefficient being 0.83. Second, the flux ratio ($f_{max}/f_{ave}$) tends to be higher during large storms. The correlation coefficient between $Dst_{min}$ and the flux ratio is generally high, for example, 0.74 for the 75~113 keV energy channel. Third, it is also worth mentioning that there is a high correlation between the TEIP and $Dst_{min}$ with the highest coefficient (0.80) being recorded for the energy channel of 75~113 keV, the typical particle energies of the ring current belt. Fourth, the particle injection during the recovery phase tends to make the storms longer. It is particularly the case for intense storms. These characteristics observed during the main phase of the magnetic storm indicate that substorm expansion activity is closely associated with the development of mangetic storm.