DOI QR코드

DOI QR Code

(U-Th)/He Dating: Principles and Applications

(U-Th)/He 연령측정법의 원리와 응용

  • Min, Kyoung-Won (Department of Geological Sciences, University of Florida)
  • Received : 2014.06.27
  • Accepted : 2014.07.14
  • Published : 2014.09.30

Abstract

The (U-Th)/He dating utilizes the production of alpha particles ($^4He$ atoms) during natural radioactive decays of $^{238}U$, $^{235}U$ and $^{232}Th$. (U-Th)/He age can be determined from the abundances of the parent nuclides $^{238}U$, $^{235}U$ and $^{232}Th$ and the radiogenic $^4He$. Because helium is one of the noble gases (non-reactive) with a relatively small radius, it diffuses rapidly in many geological materials, even at low temperatures. Therefore, ingrowth of $^4He$ during radioactive decay competes with diffusive loss at elevated temperatures during the geologic time scale, determining the amount of $^4He$ existing today in natural samples. For example, He diffusion in apatite is known to be very rapid compared to that in most other minerals, causing a significant diffusive loss at ${\sim}80^{\circ}C$ or higher. At ${\sim}40^{\circ}C$, He diffusion in apatite becomes slow enough to preserve most $^4He$ in the sample. Thus, an apatite's (U-Th)/He age represents the timing when the sample passed through the temperature range of $80-40^{\circ}C$. The crustal depth corresponding to this temperature range is called a "partial retention zone." Normal closure temperatures for a typical grain size and cooling rate are ${\sim}60-70^{\circ}C$ for apatite and ${\sim}200^{\circ}C$ for zircon and titanite. Because the apatite He closure temperature is lower than that of most other thermochronometers, it can provide critical constraints on relatively recent or shallow-crustal exhumation histories.

(U-Th)/He 연령측정법은 자연상에 존재하는 $^{238}U$, $^{235}U$$^{232}Th$이 붕괴할 때 알파 입자($^4He$ 원자)가 형성되는 현상을 이용한 연령측정법이다. 모 동위원소인 $^{238}U$, $^{235}U$$^{232}Th$과 붕괴산물인 $^4He$의 양을 측정하여 (U-Th)/He 연령을 구할 수 있다. 이렇게 형성된 $^4He$ 원자는 대부분의 지질학적 시료내에서 비교적 저온에서도 빠르게 확산되는데, 이는 $^4He$가 불활성 기체이고 다른 원소에 비해 작기 때문이다. 따라서 방사성 붕괴에 의한 $^4He$의 형성(ingrowth)과 확산에 의한 $^4He$의 방출(diffusive loss)이 지질학적 시간동안 어떻게 진행 되었느냐에 따라 현재 남아있는 $^4He$의 양이 결정된다. 예를 들어, 인회석내에서의 He 확산은 다른 광물에 비해 빨라서, 비교적 저온인 $80^{\circ}C$에서도 He이 빠르게 인회석 밖으로 방출되는 것으로 알려져 있다. 자연상의 온도조건이 약 $40^{\circ}C$ 이하로 떨어졌을 때 비로소 인회석내 He 확산이 충분히 느려져서 대부분의 He이 인회석내에 보존된다. 따라서 (U-Th)/He 연령은 시료가 $80-40^{\circ}C$를 통과한 시기를 지시한다. 자연상에서 이러한 온도범위에 해당하는 깊이를 "부분 보존대"(partial retention zone)의라 한다. 전통적으로 흔히 쓰이는 폐쇄온도(closure temperature)는 보통의 입자크기와 냉각속도에서, 인회석 경우 약 $60-70^{\circ}C$, 저어콘 및 티탄석의 경우 약 $200^{\circ}C$로 알려져 있다. 특히 인회석의 He 폐쇄온도는 다른 열역사 측정법에 비해 다소 낮기 때문에 비교적 최근의 열역사 또는 천부에서의 지각융기 현상을 기술하는데 매우 유용하게 쓰일 수 있다.

Keywords

References

  1. Aciego, S., Kennedy, B.M., DePaolo, D.J., Christensen, J.N., and Hutcheon, I., 2003, U-Th/He age of phenocrystic garnet from the 79 AD eruption of Mt. Vesuvius. Earth and Planetary Science Letters, 216, 209-219. https://doi.org/10.1016/S0012-821X(03)00478-3
  2. Ault, A.K. and Flowers, R.M., 2012, Is apatite U-Th zonation information necessary for accurate interpretation of apatite (U-Th)/He thermochronometry data? Geochimica et Cosmochimica Acta, 79, 60-78. https://doi.org/10.1016/j.gca.2011.11.037
  3. Beucher, R., Brown, R., Roper, S., Stuart, F., and Persano, C., 2013, Natural age dispersion arising from the analysis of broken crystals: Part II. Practical application to apatite (U-Th)/He thermochronometry. Geochimica et Cosmochimica Acta, 120, 395-416. https://doi.org/10.1016/j.gca.2013.05.042
  4. Blackburn, T.J., Stockli, D.F., and Walker, J.D., 2007, Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks. Earth and Planetary Science Letters, 259, 360-371. https://doi.org/10.1016/j.epsl.2007.04.044
  5. Boyce, J.W. and Hodges, K.V., 2005, U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: Insights regarding the impact of recoil redistribution of radiogenic $^{4}He$ on (U-Th)/He thermochronology. Chemical Geology, 219, 261-274. https://doi.org/10.1016/j.chemgeo.2005.02.007
  6. Boyce, J.W., Hodges, K.V., King, D., Crowley, J.L., Jercinovic, M., Chatterjee, N., Bowring, S.A., and Searle, M., 2009, Improved confidence in (U-Th)/He thermochronology using the laser microprobe: An example from a Pleistocene leucogranite, Nanga Parbat, Pakistan. Geochemistry, Geophysics, Geosystems, 10.
  7. Boyce, J.W., Hodges, K.V., Olszewski, W.J., Jercinovic, M.J., Carpenter, B.D., and Reiners, P.W., 2006, Laser microprobe (U-Th)/He geochronology. Geochimica et Cosmochimica Acta, 70, 3031-3039. https://doi.org/10.1016/j.gca.2006.03.019
  8. Braun, I. and Robert, X., 2005, Constraints on the rate of post-orogenic erosional decay from low-temperature thermochronological data: application to the Dabie Shan, china. Earth Surface Processes and Landforms, 30, 1203-1225. https://doi.org/10.1002/esp.1271
  9. Brown, R.W., Beucher, R., Roper, S., Persano, C., Stuart, F., and Fitzgerald, P., 2013, Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer. Geochimica et Cosmochimica Acta, 122, 478-497. https://doi.org/10.1016/j.gca.2013.05.041
  10. Farley, K.A., 2000, Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105, 2903-2914. https://doi.org/10.1029/1999JB900348
  11. Farley, K.A., Kohn, B.P., and Pillans, B., 2002, The effects of secular disequilibrium on (U-Th)/He systematics and dating of Quaternary volcanic zircon and apatite. Earth and Planetary Science Letters, 201, 117-125. https://doi.org/10.1016/S0012-821X(02)00659-3
  12. Farley, K.A., Shuster, D.L., and Ketcham, R.A., 2011, U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system. Geochimica et Cosmochimica Acta, 75, 4515-4530. https://doi.org/10.1016/j.gca.2011.05.020
  13. Farley, K.A., Wolf, R.A., and Silver, L.T., 1996, The effects of long alpha-stopping distances on (U-Th)/He dates. Geochimica et Cosmochimica Acta, 60, 4223-4229. https://doi.org/10.1016/S0016-7037(96)00193-7
  14. Flowers, R.M. and Farley, K.A., 2012, Apatite $^{4}He/^{3}He$ and (U-Th)/He Evidence for an Ancient Grand Canyon. Science, 338, 1616-1619. https://doi.org/10.1126/science.1229390
  15. Flowers, R.M. and Kelley, S.A., 2011, Interpreting data dispersion and "inverted" dates in apatite (U-Th)/He and fission- track datasets: An example from US midcontinent. Geochimica et Cosmochimica Acta, 73, 2347-2365.
  16. Flowers, R.M., Ketcham, R.A., Shuster, D.L., and Farley, K.A., 2009, Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73, 2347-2365. https://doi.org/10.1016/j.gca.2009.01.015
  17. Gautheron, C., Barbarand, J., Ketcham, R.A., Tassan-Got, L., van der Beek, P., Pagel, M., Pinna-Jamme, R., Couffignal, F., and Fialin, M., 2013, Chemical influence on $\alpha$- recoil damage annealing in apatite: Implications for (UTh)/ He dating. Chemical Geology, 351, 257-267. https://doi.org/10.1016/j.chemgeo.2013.05.027
  18. Green, P.F., Crowhurst, P.V., Duddy, I.R., Japsen, P., and Holford, S.P., 2006, Conflicting (U-Th)/He and fission track ages in apatite: Enhanced He retention, not anomalous annealing behaviour. Earth and Planetary Science Letters, 250, 407-427. https://doi.org/10.1016/j.epsl.2006.08.022
  19. Guenthner, W.R., Reiners, P.W., Ketcham, R.A., Nasdala, L., and Giester, G., 2013, Helium diffusion in natural zircon: Radiation damage, anisotrophy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science, 313, 145-198. https://doi.org/10.2475/03.2013.01
  20. Hourigan, J.K., Reiners, P.W., Brandon, M.T. 2005, U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta, 69, 3349-3365. https://doi.org/10.1016/j.gca.2005.01.024
  21. House, M.A., Wernicke, B.P., and Farley, K.A., 1998, Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Science, 396, 66-69.
  22. McDowell, F.W., McIntosh, W.C., and Farley, K.A., 2005, A precise $^{40}Ar-^{39}Ar$ reference age for the Durango apatite (U-Th)/He and fission-track dating standard, Chemical Geology 214, 249-263. https://doi.org/10.1016/j.chemgeo.2004.10.002
  23. Min, K., Farley, K.A., Renne, P.R., and Marti, K., 2003, Single grain (U-Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history Earth and Planetary Science Letters, 209, 323-336. https://doi.org/10.1016/S0012-821X(03)00080-3
  24. Min, K. and Reiners, P.W., 2007, High-temperature Mars-to- Earth transfer of meteorite ALH84001. Earth and Planetary Science Letters, 260, 72-85. https://doi.org/10.1016/j.epsl.2007.05.019
  25. Min, K., Reiners, P.W., Nicolescu, S., and Greenwood, J.P., 2004, Age and temperature of shock metamorphism of Martian meteorite Los Angeles from (U-Th)/He thermochronometry. Geology, 32, 677-680. https://doi.org/10.1130/G20510.1
  26. Min, K., Reiners, P.W., and Shuster, D.L., 2013, (U-Th)/He ages of phosphates from St. Severin LL6 chondrite. Geochimica et Cosmochimica Acta, 100, 282-296. https://doi.org/10.1016/j.gca.2012.09.042
  27. Min, K., Reiners, P.W., Wolff, J.A., Mundil, R., and Winters, R.L., 2006, (U-Th)/He dating of volcanic phenocrysts with high-U-Th inclusions, Jemez Volcanic Field, New Mexico. Chemical Geology, 227, 223-235. https://doi.org/10.1016/j.chemgeo.2005.10.006
  28. Reiners, P.W., Farley, K.A., and Hickes, H.J., 2002, He diffusion and (U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte, Nevada. Tectonophysics, 349, 297-308. https://doi.org/10.1016/S0040-1951(02)00058-6
  29. Reiners, P.W., Spell, T.L., Nicolescu, S., and Zanetti, K.A., 2004, Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with $^{40}Ar/^{39}Ar$ dating. Geochimica et Cosmochimica Acta, 68, 1857-1887. https://doi.org/10.1016/j.gca.2003.10.021
  30. Reiners, P.W., Zhou, Z., Ehlers, T.A., Xu, C., Brandon, M.T., Donelick, R.A., and Nicolescu, S., 2003, Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track thermochronology. American Journal of Science, 303, 489-518. https://doi.org/10.2475/ajs.303.6.489
  31. Shuster, D.L., Ehlers, T.A., Rusmore, M.E., and Farley, K.A., 2005, Rapid glacial erosion at 1.8 Ma revealed by $^{4}He/^{3}He$ thermochronometry. Science, 310, 1668-1670. https://doi.org/10.1126/science.1118519
  32. Shuster, D.L. and Farley, K.A., 2004, $^{4}He/^{3}He$ thermochronometry. Earth and Planetary Science Letters, 217, 1-17. https://doi.org/10.1016/S0012-821X(03)00595-8
  33. Shuster, D.L., Farley, K.A., Sisterson, J.M., and Burnett, D.S., 2003, Quantifying the diffusion kinetics and spatial distributions of radiogenic $^{4}He$ in minerals containing proton-induced $^{3}He$. Earth and Planetary Science Letters, 217, 19-32.
  34. Shuster, D.L., Flowers, R.M., and Farley, K.A., 2006, The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249, 148-161. https://doi.org/10.1016/j.epsl.2006.07.028
  35. Stockli, D.F., Farley, K.A., and Dumitru, T.A., 2000, Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology, 28, 983-986. https://doi.org/10.1130/0091-7613(2000)28<983:COTAHT>2.0.CO;2
  36. Tripathy-Lang, A., Hodges, K.V., Monteleone, B.D., and van Soest, M.C., 2013, Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments. Journal of Geophysical Research, 118, 1333-1341.
  37. van Soest, M.C., Monteleone, B.D., Hodges, K.V., and Boyce, J.W., 2011, Laser depth profiling studies of helium diffusion in Durango fluorapatite. Geochimica et Cosmochimica Acta, 75, 2409-2419. https://doi.org/10.1016/j.gca.2011.02.008
  38. Vermeesch, P., Sherlock, S.C., Roberts, N.M.W., and Carter, A., 2012, A simple method for in-situ U-Th-He dating. Geochimica et Cosmochimica Acta, 79, 140-147. https://doi.org/10.1016/j.gca.2011.11.042
  39. Wolf, R.A., Farley, K.A., and Kass, D.M., 1998, Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148, 105-114. https://doi.org/10.1016/S0009-2541(98)00024-2
  40. Wolf, R.A., Farley, K.A., and Silver, L.T., 1996, Helium diffusion and low-temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60, 4231-4240. https://doi.org/10.1016/S0016-7037(96)00192-5
  41. Zeitler, P.K., Herczeg, A.L., McDougall, I., and Honda, M., 1987, U-Th-He dating of apatite: a potential thermochronometer. Geochimica et Cosmochimica Acta, 51, 2865-2868. https://doi.org/10.1016/0016-7037(87)90164-5

Cited by

  1. 2014, Application of Geochronological and Isotopic Data vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.163