• Title/Summary/Keyword: Particle-in-cell method

Search Result 250, Processing Time 0.033 seconds

Numerical Analysis of Free-Surface Flows Using Improved Adaptable Surface Particle Method Based on Grid System (개선된 격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.90-96
    • /
    • 2021
  • In this study, the method of determining the state of grid points in the adaptable surface particle method based on grid system developed as a free-surface tracing method was improved. The adaptable surface particle method is a method of determining the state of the grid point according to the shape of the free-surface and obtaining the intersection of the given free-surface and grid line where the state of the grid point changes. It is difficult to determine the state of grid points in the event of rapid flow, such as collision or separation of free-surfaces, and this study suggests a method for determining the state of current grid points using the state of surrounding grid points where the state of grid point are known. A grid layer value was assigned sequentially to a grid away from the free-surface, centering on the boundary cell where the free-surface exists, to identify the connection information that the grid was separated from the free-surface, and to determine the state of the grid point sequentially from a grid away from the free-surface to a grid close to the free-surface. To verify the improved method, a numerical analysis was made on the problem of dam break in which a sudden collision of free-surface occurred and the results were compared, and the results were relatively reasonable.

Comparison between quasi-linear theory and particle-in-cell simulation of solar wind instabilities

  • Hwang, Junga;Seough, Jungjoon;Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2016
  • The protons and helium ions in the solar wind are observed to possess anisotropic temperature profiles. The anisotropy appears to be limited by various marginal instability conditions. One of the efficient methods to investigate the global dynamics and distribution of various temperature anisotropies in the large-scale solar wind models may be that based upon the macroscopic quasi-linear approach. The present paper investigates the proton and helium ion anisotropy instabilities on the basis of comparison between the quasi-linear theory versus particle-in-cell simulation. It is found that the overall dynamical development of the particle temperatures is quite accurately reproduced by the macroscopic quasi-linear scheme. The wave energy development in time, however, shows somewhat less restrictive comparisons, indicating that while the quasi-linear method is acceptable for the particle dynamics, the wave analysis probably requires higher-order physics, such as wave-wave coupling or nonlinear wave-particle interaction. We carried out comparative studies of proton firehose instability, aperiodic ordinary mode instability, and helium ion anisotropy instability. It was found that the agreement between QL theory and PIC simulation is rather good. It means that the quasilinear approximation enjoys only a limited range of validity, especially for the wave dynamics and for the relatively high-beta regime.

  • PDF

A Study on Driving Characteristics by Particle-inserting Method in Charged Particle Type Display (대전입자형 디스플레이의 입자주입 방법에 의한 구동특성 연구)

  • Lee, Dong-Jin;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • We analyzed the movement and response time of charged particles according to particle-inserting methods to understand the variation of quantity of q/m of charged particles, which is a very important factor in electrical and optical characteristics of the charged particle type display, such as lifetime, response time, contrast ratio, reflectivity, etc. For our study we used white and black charged particles of which diameter is $20{\mu}m$, prepared pieces of ITO(indium tin oxide) coated glass substrate, and formed ribs on the glass substrates. The width of a rib is $30{\mu}m$ and the cell size is $220{\mu}m{\times}220{\mu}m$. As the particle-inserting methods, the white and black charged particles were respectively inserted into a front and a rear panel with a very small electric field and also the mixture of the white and black charged particles were inserted into a rear panel. As a result of the driving characteristics of charged particles, the factors about variation of quantity of q/m according to the particle inserting method was experimentally demonstrate, showing very different driving voltage, response time, the particle movement, etc.

Particle Simulation Modelling of a Beam Forming Structure in Negative-Ion-Based Neutral Beam Injector (중성빔 입사장치에서 빔형성 구조의 입자모사 모형)

  • Park, Byoung-Lyong;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • For the effective design of a beam forming structure of the negative-ion-based neutral beam injector, a computer program based on a particle simulation model is developed for the calculation of charged particle motions in the electrostatic fields. The motions of negative ions inside the acceleration tube of a multiple-aperture triode are computed at finite time steps. The electrostatic potentials are obtained from the Poisson's equation by the finite difference method. The successive overrelaxation method is used to solve the matrix equation. The particle and force weighting methods are used on a cloud-in-cell model. The optimum design of the beam forming structure has been studied by using this computer code for the various conditions of elctrodes. The effects of the acceleration-deceleration gap distance, the thickness of the deceleration electrode and the shape of the acceleration electrode on beam trajectories are exmined to find the minimum beam divergence. Some numerical illustrations are presented for the particle movements at finite time steps in the beam forming tubes. It is found in this particle simulation modelling that the shape of the acceleration electrode is the most significant factor of beam divergence.

  • PDF

Deformation Measurement of Polymer Scaffold Using Particle Image Analysis (입자 영상 해석을 이용한 고분자 지지체 변형 측정)

  • Kang, Min Je;Oh, Sang Hoon;Rhee, Kyehan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Polydimethylsiloxane (PDMS) is used as a scaffold for cell culture. Because both the stress and strain acting on the substrate and the hemodynamic environment are important for studying mechano-transduction of cellular function, the traction force of the surface of a substrate has been measured using fluorescence images of particle distribution. In this study, deformation of the cross-sectional plane of a PDMS block was measured by correlating particle image distributions to validate the particle image strain measurement technique. Deformation was induced by a cone indentor and a shearing parallel plate. Measured deformations from particle image distributions were in agreement with the results of a computational structure analysis using the finite-element method. This study demonstrates that the particle image correlation method facilitates measurement of deformation of a polymer scaffold in the cross-sectional plane.

Fabrication and Driving of Charged particle type display (대전입자형 디스플레이의 제조 및 구동)

  • Lee, Dong-Jin;Kim, Sung-Woon;Hwang, In-Sung;Kim, Chul-Ju;Kim, Young-Cho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.72-73
    • /
    • 2007
  • The charged particle have characteristics of high-contrast ratio and wide-view angle, quick-response time. When positive voltage is applied to the upper electrode, the yellow particles with negative charge move toward the upper substrate and the black particles with positive charge move toward opposite direction. We have developed the putting method that can fill particles in cell of panel and control the amount of charged particles. We investigated putting method, fabrication process, aging and driving for charged particle type display.

  • PDF

Computation of Pressure Fields for a Hybrid Particle-Mesh Method (하이브리드 입자-격자 방법에서의 압력장 계산)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

A Meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds

  • Wu, C.T.;Koishi, M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.129-151
    • /
    • 2009
  • This paper presents a meshfree procedure using a convex generalized meshfree (GMF) approximation for the large deformation analysis of particle-reinforced rubber compounds on microscopic level. The convex GMF approximation possesses the weak-Kronecker-delta property that guarantees the continuity of displacement across the material interface in the rubber compounds. The convex approximation also ensures the positive mass in the discrete system and is less sensitive to the meshfree nodal support size and integration order effects. In this study, the convex approximation is generated in the GMF method by choosing the positive and monotonic increasing basis function. In order to impose the periodic boundary condition in the unit cell method for the microscopic analysis, a singular kernel is introduced on the periodic boundary nodes in the construction of GMF approximation. The periodic boundary condition is solved by the transformation method in both explicit and implicit analyses. To simulate the interface de-bonding phenomena in the rubber compound, the cohesive interface element method is employed in corporation with meshfree method in this study. Several numerical examples are presented to demonstrate the effectiveness of the proposed numerical procedure in the large deformation analysis.

An Application of Optimization method for Efficient Operation of Micro Grid (마이크로그리드의 효율적 운영을 위한 최적화기법의 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.50-55
    • /
    • 2012
  • This paper presents an application of optimization method for efficient operation in micro grid. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The cost function of fuel cell plant considers the efficiency of fuel cell. Particle swarm optimization(PSO) and sequential quadratic programming(SQP) are used for solving the problem of microgrid system operation. Also, from the results this paper presents the way to attend power markets which can buy and sell power from upper lever grids by connecting a various generation resources to micro grid.

Vortex Shedding Frequency for a 2D Hydrofoil with a Truncated Trailing Edge (뒷날이 잘린 2차원 수중익의 와도 흘림 주파수)

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.480-488
    • /
    • 2014
  • Vortex shedding which is the dominant feature of body wakes and of direct relevance to practical engineering problems, has been intensively studied for flows past a circular cylinder. In contrast, vortex shedding from a hydrofoil trailing edge has been studied to much less extent despite numerous practical applications. The physics of the problem is still poorly understood. The present study deals with $K{\acute{a}}rm{\acute{a}}n$ vortex shedding from a truncated trailing-edge hydrofoil in relatively high Reynolds number flows. The objectives of this paper are twofold. First, we aim to simulate unsteady turbulent flows past a two dimensional hydrofoil through a hybrid particle-mesh method and penalization method. The vortex-in-cell (VIC) method offers a highly efficient particle-mesh algorithm that combines Lagrangian and Eulerian schemes, and the penalization method enables to enforce body boundary conditions by adding a penalty term to the momentum equation. The second purpose is to investigate shedding frequencies of vortices behind a NACA 0009 hydrofoil operating at a zero angle of attack.